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Part 1. Lecture 01 - 23.02.2016

1. Introduction

Information theory deals with limits of communication.

Arbitrarily Small Probability means that probability goes to 0 but not
exactly 0 (I am not sure about this definition with probability 1).

Highlight 1.

This is the end of the first hour.
How can we measure randomness?
First quantify the randomness.
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Entropy is a measure of randomness/uncertainty.

Highlight 2.

How can we reduce the randomness?
Asking questions and processing the answers reduce the uncertainty.

A random variable X with Ω = AX = {1, 2, 3, 4} all equally likely. Yes/No
questions can be asked. How many questions needed to reveal outcome?
Let’s assume that we use the following set of questions (set #1):

(1) Is it 1? If yes it is 1, if no continue asking.
(2) Is it 2? If yes it is 2, if no continue asking.
(3) Is it 3? If yes it is 3, if no it is 4.

Let’s N denotes the number of questions asked. In that case P(N = 1) = 1
4 ,

P(N = 2) = 1
4 , P(N = 3) = 2

4 .

E[N ] = 1× 1

4
+ 2× 1

4
+ 3× 2

4
=

9

4
Now assume that we use the following set of questions (set #2):

• Is it ≥ 2?
– If yes is it 3?
– If no is it 1?

For any case, 2 questions are asked. Then E[N ] = 2.

Example 1.

Now, the question is that: Can we further reduce E[N ]? What is the lower
limit? This kind of questions are related with data compression topic. Notice that
Yes/No questions corresponds to binary approach.

X with Ω = AX = {0, 1}
• p(0) = 1, p(1) = 0 → No uncertainty
• p(0) = 0.5, p(1) = 0.5 → Large uncertainty
• p(0) = 0.1, p(1) = 0.9 → Less uncertainty

Example 2.

X with Ω = AX = {0, 1}
• X1 with Ω = AX1

= {1, 2, 3, 4} → 2 questions
• X2 with Ω = AX2 = {1, 2, 3, 4, 5, 6, 7, 8} → 3 questions → More

uncertainty

Example 3.
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Part 2. Lecture 02 - 25.02.2016

2. What is Entropy?

Entropy of a discrete random variable X is defined as

(2.1) H(X) , −
∑
x

PX(x) logPX(x)

where PX(x) or P (X = x) or p(x) is the probability of random variable
X being equal to x. Unit of entropy is bits or nats if the logarithm in
(2.1) is taken in base 2 or in base e, respectively. Change of base brings
a multiplication factor.

Definition 1 (Entropy).

After that point, logarithm will be taken in base 2 unless explicitly noted.

Highlight 3.

P (X = H) = P (X = T) = 0.5
Using (2.1), it can be found as

H(X) = −
(

1

2
log

1

2
+

1

2
log

1

2

)
= 1bit

Example 4 (Entropy of a fair coin toss).

Yes/No question equally likely to be answered also holds a 1 bit random-
ness.

Highlight 4.

Entropy is a functional of the probability distribution of X. In other words,
not f(x) but f(g(x)). It is not related with outcomes of a random variable.
It depends on PMF only.

Highlight 5.

What about the contribution of a value x0 to entropy if P (X = x0) = 0? Well,
it should be zero intuitively. If X can’t be x0, how can x0 affect uncertainty of X?
Let’s calculate using (2.1).
−p(x) log p(x) = −0× log 0 = −0×−∞→ indeterminate, ooopps!
But it should be 0, right?
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Observe that

x log x =
log x

1/x
.

lim
x→0

x log x = lim
x→0

log x

1/x

LH
= lim

x→0

1/x

−1/x2
= lim
x→0

−x2

x
= lim
x→0
−x = 0.

See L’Hopital’s Rule for further.
Remember (2.1).

H(X) = −
∑
x

PX(x)(logPX(x))

= −E[logPX(X)]

= E

[
1

logPX(X)

]

H(X) = E

[
1

log p(X)

]
Corollary 1.

H(X) ≥ 0

Proof:

0 ≤ PX(x) ≤ 1→ logPX(x) ≤ 0→ − logPX(x) ≥ 0→ H(X) ≥ 0

Lemma 1.

Entropy of a binary random variable, i.e.,

X =

{
0, with probability p

1, with probability 1− p

H(X) = −p log p− (1− p) log(1− p)

H(p) , −p log p− (1− p) log(1− p)

Definition 2 (Binary Entropy Function).
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Figure 2.1. H(p) vs p

3. Joint Entropy

H(X,Y ) ,
∑
x

∑
y

p(x, y) log p(x, y)

Note that p(x, y) is joint PMF of (X,Y ).

Definition 3 (Joint Entropy).

Y /X 0 1
0 0 0.5
1 0.5 0

H(X,Y ) = 1

Or, we can construct a combined (super) random variable, Z, as follows

AZ = {00, 01, 10, 11}
Z 00 01 10 11
p(z) 0 0.5 0.5 0

Then,

H(Z) = 1

Example 5.

Let’s extend definition of entropy to conditional entropy.
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Y conditioned onX = a is a regular random variable with p(y|X = a) = P (Y = y|X = a).
Then,

H(Y |X = a) = −
∑
y

p(y|X = a) log p(y|X = a)

4. Conditional Entropy

(4.1) H(Y |X) ,
∑
x

p(x)H(Y |X = x)

Definition 4 (Conditional Entropy).

From (4.1),

H(Y |X) = −
∑
x

p(x)

(∑
y

p(y|x) log p(y|x)

)
= −

∑
x

∑
y

p(x)p(y|x) log p(y|x)

= −
∑
x

∑
y

p(x, y) log p(y|x)

Notice that p(x, y) = p(x)p(y|x) and E[g(X)] =
∑
g(x)p(x). Let’s take g(x, y) = log p(y|x).

Then,

H(Y |X) = −
∑
x

∑
y

p(x, y)g(x, y)

= −E [g(X,Y )]

= −E [log p(Y |X)]

H(Y |X) = −E [log p(Y |X)]

Corollary 2.
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Y /X 0 1
0 1/4 1/6
1 1/4 1/6
2 0 1/6

H(Y |X = 0) = log 2 = 1bit

H(Y |X = 1) = log 3bits

Using (4.1)

H(Y |X) =
1

2
log 2 +

1

2
log 3 = 0.5 log 6bits

Example 6.

5. Chain Rule

(5.1) H(X,Y ) = H(X) +H(Y |X)

Proof:

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x, y)

Note that p(x, y) = p(x)p(y|x). log p(x, y) = log p(x) + log p(y|x)

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x)−
∑
x

∑
y

p(x, y) log p(y|x)

= −
∑
x

log p(x)
∑
y

p(x, y)−
∑
x

∑
y

p(y|x)p(x) log p(y|x)

= −
∑
x

log(p(x))p(x)−
∑
x

p(x)
∑
y

p(y|x) log p(y|x)

= H(X) +
∑
x

p(x)H(Y |X = x)

= H(X) +H(Y |X)

Theorem 1 (Chain Rule).
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Part 3. Lecture 03 - 01.03.2016

(5.2) H(X,Y |Z) = H(X|Z) +H(Y |X,Z)

Corollary 3.

In general, H(X|Y ) H(Y |X) is not equal.

−
∑
x,y

p(x, y) log p(x|y) 6= −
∑
x,y

p(x, y) log p(y|x)

Also, from the chain rule (5.1), it can be understood as well.

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

Highlight 6.

6. Divergence

The divergence (relative entropy, cross entropy, Kullback-Leibler distance)
between to PMFs p(x) and q(x) with respect to (Order is important.)
p(x) is defined as

(6.1) D(p||q) ,
∑
x

p(x) log
p(x)

q(x)
= Ep

[
log

p(X)

q(X)

]
Notice that, Ep in (6.1) is important because now, we have to different
PMFs.

Definition 5 (Divergence, Kullback-Leibler Distance).

Some equalities especially for divergence expression:

0 log
0

q
= 0

p log
p

0
=∞

0 log
0

0
= 0

Notice that p and q are a non-zero value from p(x) and q(x), respectively.

Highlight 7.
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X 1 2 3
p(x) 1/3 1/3 1/3
q(x) 1/2 1/2 0

Notice that D(p||q) =∞ (consider X = 3 point) and D(q||p) <∞.

Example 7.

• D(p||q) 6= D(q||p) in general.
• Divergence is not an actual distance due to asymmetry.
• D(p||q) = 0 iff p and q are exactly same.

Highlight 8.

7. Divergence Inequality

(7.1) D(p||q) ≥ 0

D(p||q) = 0 iff p = q ≡ p(x) = q(x) for ∀x. Notice that in this expression,
q and p are not single values, they are PMFs.

Lemma 2 (Divergence Inequality).

Now, we are going to prove that (7.1) is hold. We will use this inequality more
often that divergence itself in this course. Proof is after Jensen’s Inequality.
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8. Convex Function

A function f(x) is convex over an interval (a, b) if for every x1, x2 ∈ (a, b)
and 0 ≤ λ ≤ 1 if it satisfies

(8.1) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

If LHS is <, not ≤, than the RHS, it is called as strictly convex.

Figure 8.1. A Typical Convex Function

Notice that λ in (8.1) is denoted by t in Figure 8.1 and RHS of (8.1) is
denoted by g(x).
If f(x) is a convex function, −f(x) becomes concave or vice versa.

Definition 6 (Convex Funciton).

x2 and ex are convex and log(x) and
√
x are concave functions.

Example 8.

A function is convex or strictly convex if its second derivative is non-
negative or positive, respectively.

Theorem 2.
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9. Jensen’s Inequality and Its Proof

If f() is a convex function and X is a random variable then,

(9.1) E[f(X)] ≥ f(E[X]).

In other words,

∑
x

p(x)f(x) ≥ f

(∑
x

p(x)x

)
.

Theorem 3 (Jensen’s Inequality).

Proof by Induction:
First, let’s assume that we have a two-point mass function as P (X = x1) = p1

and P (X = x2) = p2 = 1− p1. Now, let’s write E[f(X)].

E[f(X)] = p1f(x1) + p2f(x2)

E[f(X)] = p1f(x1) + (1− p1)f(x2)

Notice that this expression is very similar to RHS of (8.1), just switch λ by p1.
But since f() is a convex function, (9.1) is hold. Then,

f(p1x1 + (1− p1)x2) ≤ p1f(x1) + (1− p1)f(x2)

f(p1x1 + (1− p1)x2) ≤ E[f(X)]

f(E[X]) ≤ E[f(X)]

Jensen’s Inequality is proven for a random variable with two-point PMF.
Now assume that inequality holds for K − 1 point PMF, check whether it holds

for K point PMF.
Let’s assume that X has a K point PMF take values from p1, p2, . . . , pk. It can

be said that

k∑
i=1

pi = 1.

Similarly,

k−1∑
i=1

pi = 1− pk.

Define a new PMF as

p′i ,
pi

1− pk
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Ep[f(X)] =

k∑
i=1

pif(xi)

= pkf(xk) +

k−1∑
i=1

pif(xi)

= pkf(xk) +

k−1∑
i=1

p′i(1− pk)f(xi)

= pkf(xk) + (1− pk)

k−1∑
i=1

p′if(xi)(9.2)

Notice that p′1, p
′
2, . . . , p

′
k−1 forms a valid PMF. Also,

Ep′ [f(X)] =

k−1∑
i=1

p′if(xi)

We assumed that Jensen’s inequality is hold for K − 1 point PMF. Then,

(9.3) Ep′ [f(X)] ≥ f(Ep′ [X])

Let’s use (9.3) in (9.2).

Ep[f(X)] ≥ pkf(xk) + (1− pk)f(Ep′ [X])

≥ pkf(xk) + (1− pk)f

(
k−1∑
i=1

p′ixi

)

Notice that f() is a convex function, then
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Ep[f(X)] ≥ pkf(xk) + (1− pk)f

(
k−1∑
i=1

p′ixi

)
≥ f

(
pkxk + (1− pk)

k−1∑
i=1

p′ixi

)

≥ f

(
pkxk + (1− pk)

k−1∑
i=1

p′ixi

)

≥ f

(
pkxk +

k−1∑
i=1

(1− pk)p′ixi

)

≥ f

(
pkxk +

k−1∑
i=1

pixi

)

≥ f

(
k∑
i=1

pixi

)
Ep[f(X)] ≥ f (Ep[X])

We have showed that Jensen’s Inequality is hold for 2-point PMF. Also, we have
showed that if it is hold for K − 1 point PMF, it is also hold for K point PMF. So
starting from 2, we may say that it is valid for 3-point PMF. From 3, we can say
that it is also valid for 4 point PMF and so on.

Jensen’s Inequality is also hold for continuous random variables.

Highlight 9.

10. Proof of Divergence Inequality

We are going to prove (7.1) which is D(p||q) ≥ 0.
Proof of Divergence Inequality: Define a new random variable Y which is

Y ,
q(X)

p(X)
.

Take the logarithm of Y but notice that logarithm is a concave function so
Jensen’s Inequality is hold in opposite way.
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Ep[log Y ] ≤ log (Ep[Y ])∑
x

p(x) log
q(x)

p(x)
≤ log

(∑
x

p(x)
q(x)

p(x)

)
∑
x

p(x) log
q(x)

p(x)
≤ log

(∑
x

q(x)

)
∑
x

p(x) log
q(x)

p(x)
≤ log (1)

∑
x

p(x) log
q(x)

p(x)
≤ 0

−
∑
x

p(x) log
p(x)

q(x)
≤ 0

−D(p||q) ≤ 0

D(p||q) ≥ 0

11. Mutual Information

X and Y with joint PMF p(x, y) and marginal PMF’s p(x) and p(y). The
mutual information I(X;Y ) is defined as

I(X;Y ) , D(p(x, y)||p(x)p(y))

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= Ep(x,y)

[
log

p(X,Y )

p(X)p(Y )

]

Definition 7 (Mutual Information).

I(X;Y ) indicates that ”How much X knows about Y ?” or vice versa. It
is ”Knowledge of X on Y .” or vice versa. If X and Y are independent,
mutual information becomes 0. It means that X or Y knows nothing about
Y or X.

Highlight 10.
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12. Entropy and Mutual Information

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x

∑
y

p(x, y) log
p(y|x)

p(y)

=
∑
x

∑
y

p(x, y) log p(y|x)−
∑
y

∑
x

p(x, y) log p(y)

=
∑
x

∑
y

p(x, y) log p(y|x)−
∑
y

p(y) log p(y)

= −H(Y |X) +H(Y )

I(X;Y ) = H(Y )−H(Y |X)

Notice that

p(y|x) =
p(x, y)

p(x)
.

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

Mutual information between two random variable is the reduction in the
uncertainty of one when the other is known. There is a symmetry.

Corollary 4.

I(X;X) = H(X)

Highlight 11.

I(X;Y ) ≥ 0.

Because it is a divergence.

Corollary 5.
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13. Chain Rule for Entropy

H(X1, X2, . . . Xn) = H(X1)

+H(X2|X1)

+H(X3|X1, X2)

+ . . .

+H(Xn|X1, X2, . . . Xn−1)

H(X1, X2, . . . Xn) =

n∑
i=1

H(Xi|X1, X2, . . . Xi−1)

Theorem 4 (Chain Rule for Entropy).

Proof:
We have shown the case when n = 2 in (5.1). Let’s start with n = 3 case.

H(X1, X2, X3) = H(X1) +H(X2, X3|X1) X2,X3 forms a super r.v.

= H(X1) +H(X2|X1) +H(X3|X1, X2) Remember (5.2).

=
...

H(X1, X2, . . . Xn) =

n∑
i=1

H(Xi|X1, X2, . . . Xi−1)

14. Conditional Mutual Information

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

= Ep(x,y,z) log
p(X,Y |Z)

p(X|Z)p(Y |Z)

Definition 8 (Conditional Mutual Information).

15. Chain Rule for Information

I(X1, X2, . . . Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, X2, . . . , Xi−1)

Here, we can think that Xis are noisy observations and Y is a parameter
to be estimated.

Theorem 5 (Chain Rule for Information).



METU EE533 INFORMATION THEORY - LECTURE NOTES 21

Part 4. Lecture 04 - 03.03.2016

Proof of Chain Rule for Information:
Let Z , X1, . . . Xn.

I(X1, X2, . . . Xn;Y ) = H(Z)−H(Z|Y )

= H(X1, . . . Xn)−H(X1, . . . Xn|Y )

=

n∑
i=1

H(Xi|X1, . . . Xi−1)−
n∑
i=1

H(Xi|X1, . . . Xi−1, Y )

=

n∑
i=1

(H(Xi|X1, . . . Xi−1)−H(Xi|X1, . . . Xi−1, Y ))

=

n∑
i=1

I(Xi;Y |X1, X2, . . . , Xi−1) using conditional mutual information

16. Upper Bound for H(X)

(16.1) H(X) ≤ log |AX |
where A means ”alphabet” and |AX | is the alphabet size of X.
H(X) = log |AX | iff X is uniformly distributed in AX .

Theorem 6 (Upper Bound for H(X)).

Proof:
Let u(x) = 1/|AX |. x ∈ A be the uniformly distributed of AX .

D(p||u) =
∑
x∈AX

p(x) log
p(x)

u(x)

=
∑
x∈AX

p(x) log p(x)−
∑
x∈AX

p(x) log u(x)

Notice that log u(x) = − log |AX | and it is independent from x, it can be taken
out of the summation. Then,

D(p||u) = −H(X) + log |AX |
∑
x∈AX

p(x)

= −H(X) + log |AX |1
= −H(X) + log |AX |

We know that divergence (LHS) is always ≥ 0. It means that

H(X) ≤ log |AX |
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17. Conditioning Reduces Entropy

a.k.a. Information can’t hurt.

(17.1) H(X|Y ) ≤ H(X)

H(X|Y ) = H(X) iff they are independent.

Theorem 7 (Conditioning Reduces Entropy).

Proof: We know that I(X;Y ) ≥ 0 means that H(X)−H(X|Y ) ≥ 0.

p(x, y) is given as in the table.

Y /X 1 2
1 0 3/4
2 1/8 1/8

H(X) = H(1/8) u 0.544 bits

H(X|Y = 1) = 0 bits

H(X|Y = 2) = 1 bits

Notice that for a single value of condition (Y = 2), entropy doesn’t have
to decrease. But in average, it will do...
From conditional entropy (4.1),

H(X|Y ) = P (Y = 1)H(X|Y = 1) + P (Y = 2)H(X|Y = 2)

=
3

4
0 +

1

4
1

=
1

4
bits.

Example 9.

18. Independence Bound on Entropy

Let X1, X2, . . . , Xn be drawn according to p(x1, x2, . . . , xn).

H(X1, X2, . . . , Xn) ≤
n∑
i=1

H(Xi)

LHS and RHS are equal iff Xi are independent.

Theorem 8 (Independence Bound on Entropy).
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Proof:
It can be shown using chain rule for entropies.

H(X1, X2, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1)

≤
n∑
i=1

H(Xi)

From (17.1), we know that H(Xi|X1, . . . , Xi−1) ≤ H(Xi).

19. Data-Processing Inequality

Now, assume that we are interested in finding X. However, we don’t have it
directly, we have noisy observations Y for example. We are going to estimate/detect
X. We process Y somehow and generate a new random variable called Z. We may
use Z or Y to estimate X. Should we use Y or Z?

No clever manipulation of the data can improve the inferences(detection,
estimation) that can be made directly from data. You can’t gain further
information by processing the observation. So why do we have FFT, signal
processing algorithms, etc. ? Well, they may not be optimal but they are
practical, we can implement them. Also, we don’t gain information but
it doesn’t mean that we lose. Information may still be same. However,
generally we loose information. But we are engineers!

Highlight 12.

20. Markov Chain

Random variables X,Y ,Z form a Markov chain in the order X → Y → Z
if p(z|x, y) = p(z|y).
In general (not special to Markov Chain), we can write:

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . .

In Markov chains, p(x3|x2, x1) becomes p(x3|x2).
Also in general:

p(x, z|y) = p(x|y)p(z|x, y)

But for the previous definition:

p(x, z|y) = p(x|y)p(z|y)

Definition 9 (Markov Chain).
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If Z = g(Y ) then X → Y → Z but not vice versa always! In this notation,
g() is a function, it maps a value from Y to a single value to Z. For example,
there isn’t any randomness in g(). If Y is known, Z is fixed. That’s the
meaning here, it is a deterministic function.

Highlight 13.

Part 5. Lecture 05 - 08.03.2016

If X → Y → Z then I(X;Y ) ≥ I(X;Z). For equality, X → Z → Y should
be satisfied.
No processing of Y , deterministic or random, can increase the information
that Y contains about X.

Theorem 9 (Data Processing Inequality (DPI)).

Proof:

I(X;Y,Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y )

I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y )

Notice thatX and Z are conditionally independent (Y ). Therefore, I(X;Z|Y ) = 0.

I(X;Z) + I(X;Y |Z) = I(X;Y )

Since I(X;Y |Z) ≥ 0, I(X;Y ) ≥ I(X;Z).
For equality, I(X;Y |Z) = 0. It means thatX → Z → Y (WHY NOT Y → Z → X???)

This (equality case etc.) is related to sufficient statistics.

If Z = g(Y ) then, I(X;Y ) ≥ I(X;Z).
Because, if Z = g(Y ) then X → Y → Z.

Corollary 6.

If X → Y → Z then, I(X;Y |Z) ≤ I(X;Y ).
Notice that ”conditioning reduces mutual information.” statement is valid
if there is a Markov chain! It may not be true in general.
It can be shown easily using last step of proof of Data Processing Inequality.

Corollary 7.



METU EE533 INFORMATION THEORY - LECTURE NOTES 25

We have a case where X → Y → Z does not hold. Let X and Y be inde-
pendent and fair binary random variables.

Z = X ⊕ Y

I(X;Y ) = 0 bits

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

= H(X|Z)

= P (Z = 0)H(X|Z = 0) + P (Z = 1)H(X|Z = 1)

= 0.5× 1 + 0.5× 1

= 1 bit

Example 10.

21. Fano’s Inequality

Suppose that X is observed as Y . Y is related to X, of course. Fano’s inequality
relates the probability of error in guessing X to its conditional entropy H(X|Y ).

Let X̂ be estimate of X. X̂ = f(Y ). X → Y → X̂ forms a Markov chain.

Pe , P (X̂ 6= X)

(21.1) H(Pe) + Pe log (|AX | − 1) ≥ H(X|Y )

Little expansion:

H(Pe) + Pe log (|AX | − 1) ≥ H(X|X̂) ≥ H(X|Y )

Notice that H(Pe) is a binary entropy function and its value between 0 and
1.
Notice that X̂ ∈ AX . If not, see the proof below.

Theorem 10 (Fano’s Inequality).

Proof:
(21.1) can be weakened to:

1 + Pe log (|AX | − 1) ≥ H(X|Y )

Pe ≥
H(X|Y )− 1

log |AX |

Notice that Pe = 0 implies H(X|Y ) = 0.
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Pe ≥
H(X|Y )− 1

log |AX |

Highlight 14 (Weakened Fano’s Inequality (?)).

E ,

{
1 if X̂ 6= X

0 if X̂ = X

Then, Pe = P (E = 1), H(Pe) = H(E). (Again H(Pe) is binary entropy func-
tion.)

H(E,X|Y ) = H(X|Y ) +H(E|X,Y )

= H(E|Y ) +H(X|E, Y )

Notice that H(E|X,Y ) = 0 because when X and X̂ which is function of Y are
known, E is known. Also, H(E|Y ) ≤ H(E) or H(E|Y ) ≤ H(Pe) because condi-
tioning reduces the entropy. Also,

H(X|E, Y ) = P (E = 0)H(X|E = 0, Y ) + P (E = 1)H(X|E = 1, Y )

≤ (1− Pe)0 + Pe log (|AX | − 1) .

How do we end up with log (|AX | − 1) term? It is related to upper bound for
entropy given in (16.1). But since it is known that there is an error, sample space
is decreased by one outcome. That’s the reason why do we have minus 1 term.

Note: If we don’t want to take X̂ ∈ AX , i.e., estimation from Y values not exist
in AX then we may drop minus 1 term in logarithm.

Finally,

H(X|Y ) ≤ H(Pe) + Pe log (|AX | − 1)

22. Log Sum Inequality

For n positive numbers i = 1, . . . , n, ai ≥ 0, bi ≥ 0:
n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log

∑n
i ai∑n
i bi

with equality iff ai/bi is constant.

Theorem 11 (Log Sum Inequality).

THIS IS END OF CHAPTER 2.
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23. The Asymptotic Equipartition Property

Basic conclusion at the end of this chapter: When a long sequence of random
variables are observed, the frequency of an event approaches the event’s probability
as the length of the sequence goes to infinity.

Consider sequence of random variables X1, X2, . . . , Xn, . . .. Assume that Xi is a
I.I.D. (independent and identically distributed) with PMF p(x). Then,

p(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn)

= p(x1)p(x2) . . . p(xn)

=

n∏
i=1

P (Xi = xi)

=

n∏
i=1

p(xi)

Given an IID random sequence, laws of large numbers deal with random variables
(summarizing variables let’s say) obtained through the sequence like

S =

n∑
i=1

Xi

S̃ =
S − E[S]√

n

Ŝ =
S

n

Ŝ =
1

n

n∑
i=1

Xi

Most of the time, we will be interested in Ŝ, average. We will see that as n goes
to∞, Ŝ will concantrate around a single value. It will ”behave” like a deterministic
value.

24. Weak Law of Large Numbers (WLLN)

LetX1, X2, . . . be a real-valued IID random sequence with finite mean (E[Xi] <∞)

and finite variance (σ2
Xi
<∞). Given n, let Ŝ = 1/n

∑n
i=1Xi. Then, for any ε > 0
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(24.1) P
(∣∣∣Ŝ − E[X]

∣∣∣ ≤ ε)→ 1 as n→∞.

Alternatively,

lim
n→∞

P
(∣∣∣Ŝ − E[X]

∣∣∣ ≤ ε) = 1

P
(∣∣∣Ŝ − E[X]

∣∣∣ ≤ ε) > 1− δ for any δ as n→∞.

Theorem 12 (Weak Law of Large Numbers (WLLN)).

Part 6. Lecture 06 - 10.03.2016

Proof:
It can be proved using Chebyshev’s Inequality which is given in (24.2).

(24.2) P (|Y − E[Y ]| ≥ a) ≤ σ2
Y

a2

Take Y = Ŝ, a = ε.

E[Y ] = E[S]

= E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi]

= E[X]

σ2
Y = σ2

Ŝ

= nσ2
X

1

n2

=
σ2
X

n

Then we can write (24.2) can be written as

P
(∣∣∣Ŝ − E[X]

∣∣∣ ≥ ε) ≤ σ2
X

nε2

P
(∣∣∣Ŝ − E[X]

∣∣∣ ≥ ε) ≥ 1− σ2
X

nε2
= 1− δ

Since

lim
n→∞

σ2
X

nε2
= 0
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then

(24.3) lim
n→∞

P
(∣∣∣Ŝ − E[X]

∣∣∣ ≤ ε) = 1

(24.3) can be written as (24.4).

(24.4) P
(
Ŝ = E[X]± ε

)
→ 1 as n→∞.

25. The Law of Frequencies

Let {Xi} be I.I.D. random sequence with alphabet AX . Define F which
is a subset of AX . Remember that any subset is called as event. Then

CF (
¯
x) is the number of times F occurs in the sequence. Then,

CF (
¯
x)

n
is

the frequency which F occurs in
¯
x where n is the length of sequence.

For any ε > 0,

P

(
CF (

¯
X)

n
= P (X ∈ F )± ε

)
→ 1 as n→∞.

Corollary 8 (The Law of Frequencies).

Proof:

Zi ,

{
1 if Xi ∈ F
0 otherwise

E[Zi] = 1× P (Xi ∈ F ) + 0× P (Xi /∈ F )

= P (Xi ∈ F )

= P (X ∈ F )

Ŝ =
1

n

n∑
i=1

Zi

By definition of frequency:

CF (
¯
X)

n
=

1

n

n∑
i=1

Zi = Ŝ

WLLN (Weak Law of Large Numbers) says that

(25.1) P

(
CF (

¯
X)

n
= P (X ∈ F )± ε

)
→ 1 as n→∞.

Notice that in (25.1),



30 ALPER YAZAR

CF (
¯
X)

n
= Ŝ

P (X ∈ F ) = E[Zi].

26. Typical Sets

We wish to find probabilities of sequence which cause WLLN. Let’s consider
a sequence

¯
x = [x1, x2, . . . , xn]. Each xi is an outcome of Xi and Xis are I.I.D.

Let’s AX be the alphabet of any Xi such that AX = {a1, a2, . . . aq}. Probability of
each outcome is (p1, p2, . . . , pq). Also, let’s say that Ci(

¯
x) denotes the number of

occurrence of ai in
¯
x. Then,

p(
¯
x) = p(x1)p(x2) . . . p(xn)

= (p1)C1(
¯
x)(p2)C2(

¯
x) . . . (pq)

Cq(
¯
x)

' pnp1

1 pnp2

2 . . . pnpqq(26.1)

' 2np1 log p12np2 log p2 . . . 2npq log pq(26.2)

' 2(−n(−
∑n
i=1 pi log pi))

p(
¯
x) ' 2(−nH(X))

Notice that, transition from (26.1) to (26.2) is done with help of (26.3).

(26.3) ab = 2log ab = 2b log a

p(
¯
x) ' 2(−nH(X))

Notice that this is ”equipartition” part and it is not dependent on exact
value of

¯
x directly. In other words, there are many

¯
xs with this probability.

Highlight 15.

Part 7. Lecture 07 - 15.03.2016

If X1, X2, . . . , Xn are IID with PMF p(x), then

P

(
− 1

n
log p(X1, X2, . . . , Xn) = H(X)± ε

)
→ 1 as n→∞.

where Xi = X.

Theorem 13.

Proof:
Since Xi’s are IID,
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p(X1, X2, . . . , Xn) =

n∏
i=1

p(Xi)

− 1

n
log

n∏
i=1

Xi = − 1

n

n∑
i=1

logXi

Now, define a new random variable Yi , − log p(Xi) and remember the WLLN
(24.1). Then,

E[Y ] = E[− log p(X)]

= H(X)

Using WLLN,

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − E[Y ]

∣∣∣∣∣ ≤ ε
)
→ 1 as n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

− log p(Xi)−H(X)

∣∣∣∣∣ ≤ ε
)
→ 1 as n→∞

What do we mean by P (X ≤ 3)? In probability theory, we talk about sets
and probabilities are assigned to set. Where is set in this case? Actually,
P (X ≤ 3) = P ({x : x ≤ 3, x ∈ AX}). B is a subset (event) of AX such that
B ⊂ AX and B = {x : x ≤ 3, x ∈ AX}.
Let’s use this notation our last theorem.

P

({
x1, x2, . . . , xn :

1

n

n∑
i=1

− log p(xi) = H(X)± ε

})
→ 1 as n→∞

Highlight 16.

27. Typical Set

The typical set A
(n)
ε with respect to p(x) is defined as

A(n)
ε =

{
¯
x :

1

n

n∑
i

− log p(xi) = H(X)± ε

}
¯
x , x1, x2, . . . , xn

Definition 10 (Typical Set).
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28. Shannon - McMillan Theorem

(1) If
¯
x = (x1, x2, . . . , xn) ∈ A(n)

ε , then

H(X)− ε ≤ − 1

n
log p(x1, x2, . . . , xn) ≤ H(X) + ε.

(2) P
(
A

(n)
ε

)
> 1− ε

(3)
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(X)+ε)

(4)
∣∣∣A(n)

ε

∣∣∣ ≥ (1− ε)2n(H(X)+ε)

Theorem 14 (Shannon - McMillan Theorem).

Proofs:

(1) It is actually definition from typical set.

(2) It is based on the previous theorem. P
(
A

(n)
ε

)
→ 1 as n→∞ is equivalent

to P
(
A

(n)
ε

)
> 1− δ as n→∞. Set δ = ε.

(3)

1 =
∑
x∈AnX

p(
¯
x)

≥
∑

x∈A(n)
ε

p(
¯
x)

≥
∑

x∈A(n)
ε

2−n(H(X)+ε) since p(
¯
x) ≥ 2−n(H(X)+ε)(28.1)

≥ 2−n(H(X)+ε)
∑

x∈A(n)
ε

1

≥ 2−n(H(X)+ε)
∣∣∣A(n)

ε

∣∣∣

Note: How is (28.1) possible? Since p(
¯
x) ' 2(−nH(X)) and take ε is a non-

negative value. Because if we look at previous usage of ε, non-negative
values makes sense.
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(4) Use property 2 and similar proof method for 3.

1− ε ≤ P
(
A(n)
ε

)
≤
∑
A

(n)
ε

p(
¯
x)

≤
∑
A

(n)
ε

2−n(H(X)−ε)

≤ 2−n(H(X)−ε)
∑
A

(n)
ε

1

≤ 2−n(H(X)−ε)
∣∣∣A(n)

ε

∣∣∣
29. Negative Statement of AEP

For any ε > 0, there is a positively valued sequence aε,n that converges to zero as
n→∞ such that for any positive integer n and any set S containing sequence with
length n |S| ≥ (P (S)− aε,n) 2n(H(X)−ε). If P (S) → 1, |S| & 2n(H(X)−ε). (I am
not sure about the & symbol. Prof. Yilmaz draws similar but different symbol with
equality with meaning ”roughly larger than equal to” according to him. I couldn’t
find it in LATEX.)

PX(0) = 0.9, PX(1) = 0.1. The most likely sequence is 000 . . . 00 . . . 00 with
probability 0.9n. But it is not a typical sequence! In a typical sequence,
we are expecting to see 10% 1 and 90% 0. Probability of single typical

sequence is 0.90.9n0.10.1n and for all typical sequence multiply it by

(
n

0.1

)
.

Example 11.

30. AEP and Data Compression

Data compression is representation of data in compact form. It is generally
interested in storage problem: Use small storage are as much as possible.

Let’s choose 4 different words: congratulations, representation, multiplica-
tion, asymptotic. We may represent these words using their initials: c, r,
m, a, 1 byte information. We may also use 2-bit coding. Which one is the
best one?

Example 12.

Let X1, X2, . . . , Xn be an IID random variable with alphabet AX . AnX denotes

all possible sequences and it has |AnX | elements. Type typical set, A
(n)
ε has roughly

2nH(X) elements. The remaining elements are not in typical set, non-typical set.
Our task is to represent all elements of AnX with the smallest average number of

bits. Let’s use the following scheme: We dedicate first bit to indicate whether the
sequence is a typical sequence or a non-typical sequence. Let’s call this first bit as
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”typicality bit.” Then, for the remaining bits we use two different representations
one for typical sequences and one for non-typical ones.

For typical set, since there are roughly 2nH(X) elements, we can use nH(X)
number of bits + 1 typicality bit to represent a typical sequence. To find an upper
bound let’s say that we use n(H(X) + ε) + 1 bits.

For non-typical set, we may think that we should use n log(|AX |)+1 bits. Notice
that this is an upper bound and generally number of typical sets are much more
smaller than number of non-typical sets. Therefore, we think that all sets are
non-typical sets to find an upper bound.

Notice that, from upper bound for entropy, (16.1), we say that typical sets needs
less number of bits than non-typical sets for representation.

Let l(
¯
X) be the length of the representation corresponding to

¯
X. Let’s find the

average length for per symbol (for single random variable, X, in a sequence
¯
X).

1

n
E [l(

¯
X)] =

1

n

∑
¯
x

p(
¯
x)l(

¯
x)

=
1

n

 ∑
x∈A(n)

ε

p(
¯
x)l(

¯
x) +

∑
x/∈A(n)

ε

p(
¯
x)l(

¯
x)


=

1

n

 ∑
x∈A(n)

ε

p(
¯
x) [n(H(X) + ε) + 1] +

∑
x/∈A(n)

ε

p(
¯
x) [n log(|AX |) + 1]


=

1

n

[n(H(X) + ε) + 1]
∑

x∈A(n)
ε

p(
¯
x) + [n log(|AX |) + 1]

∑
x/∈A(n)

ε

p(
¯
x)


=

(
H(X) + ε+

1

n

)
P
(
A(n)
ε

)
+

(
log |AX |+

1

n

)
P
(

(A(n)
ε )C

)

Notice that as n→∞, P
(
A

(n)
ε

)
→ 1 and P

(
(A

(n)
ε )C

)
→ 0. Therefore, in limit

case,

1

n
E [l(

¯
X)] ' H(X) + ε

Interesting, right! The question is that ”Is this the minimum?”. We haven’t
done it yet. But we will, we will... We will try to see that the lower bound is
H(X). Then we can say that the proposed scheme in other words typical set idea
works well.
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Part 8. Lecture 08 - 17.03.2016

31. Source Coding (Data Compression)

A source code C for a random variable X is a mapping from AX to D∗,
the set of (finite length)(strings of) symbols from a D-ary alphabet.
C(x) is codeword corresponding to x. l(x) is length of C(x).

Definition 11 (Source Code).

Morse code is a source code. AX = {a, b, c, . . . , z}. D = 2.
D∗ = {−, .,−.,−−, .−, . . .} and so on. l(a) = 2, l(b) = 3, l(c) = 3.

Example 13.

Expected length of a source code C is

L(C) =
∑
x∈AX

p(x)l(x).

Definition 12.

AX = {FB,GS,BJK,TS,BS} with probabilities 0.1, 0.2, 0.4, 0.2, 0.1, re-
spectively. Let FB→ 00, GS→ 01, BJK→ 02, TS→ 10, BS→ 2. In this
case, D = 3.

L(C) = 0.1× 2 + 0.2× 2 + 0.4× 2 + 0.2× 2 + 0.1× 1 = 1.9 symbols.

Example 14.

A code is non-singular if every element in AX is mapped into a different
string D∗. xi 6= xj iff C(xi) 6= C(xj). Note that non-singularity is related
to single values of X, not a sequence. Can I go back for single codeword
to its original value?

Definition 13 (Non-Singular Code).

AX = {x1, x2, x3}, D = 2. C(x1) = 0, C(x2) = 01,C(x3) = 1. This code is
non-singular.

Example 15.
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The extension C∗ of a source code C is the mapping from finite length
strings of AX to finite length strings in D defined by

C(x1, x2, . . . , xn) , C(x1)C(x2) . . . C(xn) concatanation.

Definition 14 (Extension of a Code).

AX = {a, b}. C(a) = 0. C(b) = 11. C(ab) = 011. C(ba) = 110.

Example 16.

A code is uniquely decodable if its extension is non-singular. Any encoded
string is a uniquely decodable code has only one possible source string
producing it.

Definition 15 (Unique Decodability).

AX = {a, b}. C(a) = 0. C(b) = 01.

Example 17 (A Uniquely Decodable Code).

A code is called a prefix (instantaneous) code if no codeword is a prefix
of another. For example, C(a) = 0, C(b) = 01 is not a prefix code but
C(a) = 0, C(b) = 11 is.

Definition 16 (Prefix (Instantaneous) Code).

Prefix codes (our favourites!) ⊂ Uniquely decodable codes ⊂ Non-singular
codes ⊂ All source codes.

Highlight 17.
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32. Kraft’s Inequality

For any prefix code with alphabet size D, the codeword lengths l1, l2, . . . , lm
must satisfy the inequality

n∑
i=1

D−li ≤ 1.

Conversely, given l′1, l
′
2, . . . , l

′
m satisfying

∑n
i=1D

−l′i ≤ 1, there exists a pre-
fix code with code lengths l′1, l

′
2, . . . , l

′
m.

Theorem 15 (Kraft’s Inequality).

AX = {a, b, c, d, e}. Take D = 2 and l(a) = l(b) = l(c) = l(d) = l(e) = 2.
Let assign a→ 00, b→ 01, c→ 10 and d→ 11. We can’t assign anything
to e. Check using Kraft’s inequality:

∑n
i=1D

−li = 5/4 � 1.

Example 18.

MT1 is up-to here.

Part 9. Lecture 09 - 22.03.2016

Proof:
We will use tree representation of computer sciences for proof. Consider the

Figure 32.1.

Figure 32.1. Tree Representation

In this representation:

• Each node has D children.
• Branches represent symbol from that D-ary alphabet.
• Each code word is represented by a leaf.
• The path from the root to a leaf determines the codeword for that leaf.
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Note: In tree terminology, leaf is defined as a node with no children. I think note
written in green in the Figure 32.1 which is ”If there was a leaf, code would become
non-prefix.” seems to be wrong. Because it conflicts with definition of leaf. Leaf
definition in this section is slightly different than the true leaf definition. Please
keep it in mind for the following parts.

For prefix condition no codeword is prefix of another. This implies that descen-
dants of a leaf can’t be a leaf.

Consider the diagram shown in Figure 32.2.

Figure 32.2. Levels of Tree

lmax denotes the length of the longest code word. No node is a descendant of
two codewords (non-singular code or prefix code?), there are 3 possibilities.

A node is,

(1) descendant of a codeword. (ancestor ? Why do you put a node under a
leaf, it should be a prefix code, right?)

(2) codeword.
(3) directly connected to root.

At level lmax, we can have at most Dlmax codewords. Number of descendants of
a codeword with length li is Dlmax−li . Then,

∑
i

Dlmax−li ≤ Dlmax

∑
i

D−li ≤ 1
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Let l1 = 1, l2 = 2, l3 = 3, l4 = 3, D = 2. Is this possible?

2−1 + 2−2 + 2−3 + 2−3 ≤ 1

1 ≤ 1

Yes.

Figure 32.3. A Possible Solution

Example 19.

Kraft’s inequality also holds for uniquely decodable codes which is a larger
set than prefix codes. Proof is in the book (I hope).

Theorem 16 (General Kraft’s Inequality (?)).

33. Noiseless Coding Theorem

The expected length (L) of any uniquely decodable D-ary code for a random
variable X satisfies

(33.1) L ≥ HD(X)

where HD(X) denotes the entropy taken in base D in (33.1). Equality is
hold iff D−li = pi for all i where li is integer. pi is the probability of X
taking value i.

Theorem 17 (Noiseless Coding Theorem).

Proof:
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L−HD(X) =
∑
i

pili − (−1)
∑
i

pi logD pi

=
∑
i

pi logDD
li +

∑
i

pi logD pi

= (−1)
∑
i

pi logDD
−li +

∑
i

pi logD pi

Let’s take a term c = logD
(∑

iD
−li
)

and add and subtract it.

L−HD(X) = −
∑
i

pi logDD
−li + c+

∑
i

pi logD pi − c

= −
∑
i

pi
(
logDD

−li − c
)

+
∑
i

pi logD pi − c

= −
∑
i

pi logD
D−li∑
j D
−lj

+
∑
i

pi logD pi − c

= −
∑
i

pi logD
pi

D−li∑
j D
−lj

− c

Let ri ,
D−li∑
j D
−lj

. Notice that ri is a valid PMF because 0 ≤ ri ≤ 1 and
∑
i ri = 1.

From definition of divergence,

L−HD(X) = D(p||r)− c

= D(p||r)− logD

(∑
i

D−li

)

D(p||r) ≥ 0.
∑
iD
−li ≤ 1 is valid from Craft’s inequality. Then minus logarithm

becomes non-negative. Then, L ≥ HD(X).
For equality, D(p||r) = 0 and

∑
iD
−li = 0. Then,

pi = ri =
D−li∑
j D
−lj

= D−li ,∀i



METU EE533 INFORMATION THEORY - LECTURE NOTES 41

X is a random variable. AX = {a, b, c} with probabilities 1/2, 1/4, 1/4,
respectively. D = 2. It can be found that H(X) = 3/2 bits. From the
previous theorem, we know that average codeword length of best code is
3/2. Let’s try to find this. Do we satisfy pi = D−li condition? Yes!

1

2
= 2−l1

l1 = 1

1

4
= 2−l2 = 2−l3

l2 = l3 = 2

Let c(a) = 0,c(b) = 10,c(c) = 11. Check L.

L =
1

2
1 +

1

4
2 +

1

4
2

=
3

2

Example 20.

For D-adic distribution, pi = D−li ∀i where li is integer.
It is easy to come up with the optimal source code for D-adic distributions.
Not so for non-D-adic ones.

Definition 17 (D-adic Distribution).

34. Bounds on Optimal Code Lengths

Optimal codes have smallest code length. Optimal code does not have to be
unique.
li − logD pi. Notice that li is not integer for an arbitrary pi. Shannon says that

take li =

⌈
log

1

pi

⌉
. This is an ceiling function. Is Kraft’s inequality satisfied with

this selection?

−
⌈

logD
1

pi

⌉
≤ − logD

1

pi

∑
i

D
−
⌈

logD
1

pi

⌉
≤ D

− logD
1

pi =
∑

pi = 1

Kraft’s inequality is satisfied for Shannon codelengths.
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logD
1

pi
≤
⌈

logD
1

pi

⌉
< 1 + logD

1

pi∑
i

pi logD
1

pi
≤
∑
i

pi

⌈
logD

1

pi

⌉
<
∑
i

pi

(
1 + logD

1

pi

)
HD(X) ≤ L < 1 +HD(X)

Let’s say that a smart person says that he/she finds optimal codes. For optimal
codes with length L∗ means that HD(X) ≤ L ≤ 1 +HD(X). Notice that Shannon
code does not claim an optimal code. It is an sub-optimal code. It would be optimal
if HD(X) = L.

There is an overhead of 1 bit with this single symbol construction. If we send a
sequence of source symbols,

HD(X1, . . . , Xn) ≤ L(C∗n) < HD(X1, . . . , Xn) + 1(34.1)

Same inequality holds because we can construct a super random variable like

¯
X , X1, . . . , Xn. L(C∗n) is average codelength for optimal C∗n code constructed for
length-n X sequence.

Ln(C∗n) ,
L(C∗n)

n

Ln(C∗n) is average codelength per source symbol to make a fair compression.
From (34.1),

1

n
HD(X1, . . . , Xn) ≤ Ln(C∗n) <

1

n
HD(X1, . . . , Xn) +

1

n

HD(X) ≤ Ln(C∗n) < HD(X) +
1

n
by taking I.I.D.(34.2)

(34.2) is linked to idea in AEP. Take n→∞.
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Part 10. Lecture 10 - 24.03.2016

Let AX = {a, b}, p(a) = 0.8, p(b) = 0.2. We can find that HD(X) = 0.72.
Shannon codeword lengths:

li =

⌈
logD

1

pi

⌉
la =

⌈
log2

1

0.8

⌉
= 1

lb =

⌈
log2

1

0.2

⌉
= 3

L1 = p(a)la + p(b)lb

= 0.8× 1 + 0.2× 3

= 1.4 bits/symbol

Then,

HD(X) ≤ L1 < HD(X) + 1

0.72 ≤ 1.4 < 1.72

For double symbol case:

laa =

⌈
log2

1

0.64

⌉
= 1

lab = lba =

⌈
log2

1

0.16

⌉
= 3

lbb =

⌈
log2

1

0.04

⌉
= 5

L2 =
1

2
(0.64× 1 + 0.16× 2× 3 + 0.04× 5)

= 0.9 bits/symbol

Then,

HD(X) ≤ L2 < HD(X) + 1

0.72 ≤ 0.9 < 0.72 + 1/2

Example 21.
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35. Huffman Codes

This section should be read from the book. It will be asked in exam with
probability 1!

Highlight 18.

Huffman Codes are optimal, i.e., they have the smallest average blocklength for
a given source. Note that average length of a source code does not necessarily equal
to entropy. For example, for the previous example (single symbol case) minimum
(practical) is 1 bit. It is optimum. But it is larger than the lower bound (0.72 bits).
We can match the lower bound if source has a D-adic distribution.

Idea is in Huffman Code is assigning shorter codes to more probable sources. We
form a tree starting from least probable source.

Figure 35.1. Binary Example

For ternary example, see the book.

Example 22.

36. Channel Capacity

How does communication between two points: A & B occurs? The transfer of
information is a physical process and hence subject to uncontrollable disturbance
(noise) and imperfections of the physical signalling process. A generic communica-
tion system can be shown as in 36.1.
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Figure 36.1. A General Communication System

Part 11. Lecture 11 - 29.03.2016

Let AX and AY be the input and output alphabet, respectively. A dis-
crete channel is a system of probability functions pn(y1, . . . , yn|x1, . . . , xn).
x1, . . . , xn ∈ AX , y1, . . . , yn ∈ AY where n = 1, 2, . . .

pn(y1, . . . , yn|x1, . . . , xn) ≥ 0∑
y1,...,yn

pn(y1, . . . , yn|x1, . . . , xn) = 1

Definition 18 (Discrete Channel).

A discrete channel is memoryless if output yk depends on input xk.

p(yk|x1, . . . , xn, y1, . . . , yk−1) = p(yk|xk)

Then using the chain rule of probability.

p(y1, . . . , yn|x1, . . . , xn) =

n∏
i=1

p(yi|x1, . . . , xn, y1, . . . , yn−1)

=

n∏
i=1

p(yi|xi)(36.1)

Definition 19 (Discrete Memoryless Channel(DMC)).
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The ”information” channel capacity of a discrete memoryless channel is
defined as

C = max
p(x)

I(X;Y ).(36.2)

Notice that (36.2) is maximization over a function.

Definition 20 (”Information” Channel Capacity).

The ”operational” channel capacity of a DMC(discrete memoryless chan-
nel) is the highest rate in bits per channel use at which information can be
sent with arbitrarily small probability of error.

Definition 21 (”Operational” Channel Capacity).

We will show that two definitions are the same.

Highlight 19.

37. Example of Channels and Their Capacities

0

1

0

1

0

1

0

1

Figure 37.1. Noiseless Binary Channel

37.1. Noiseless Binary Channel. Operational channel capacity is 1 bit/channel
use.

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )

= max
p(x)

H(X)

= 1bit ,when p(x) is uniform.
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0

1

b

a

c

d

1/2

1/2

1/4

3/4

Figure 37.2. Noisy Channel with Non-overlapping Outputs

37.2. Noisy Channel with Non-overlapping Outputs. Again, 1 bit (since they
are non-overlapping) can be reliably transmitted.

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )

= max
p(x)

H(X)

= 1 bit, when p(x) is uniform.
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a

b

c

d

0

1

2

3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 37.3. Noisy Channel with Overlapping Outputs

37.3. Noisy Channel with Overlapping Outputs. We can still transmit 1 bit
reliably. For example, we can use non-overlapping pairs like a and c. But is this
the maximum.

C = max
p(x)

I(X;Y )

= max
p(x)

H(X)−H(X|Y )

= max
p(x)

H(Y )−H(Y |X)

= max
p(x)

H(Y )−
∑
x

p(x)H(Y |X = x)

= max
p(x)

H(Y )−
∑
x

p(x)1

= max
p(x)

H(Y )− 1

= 2− 1 = 1 bit, when p(x) is uniform (not unique)(also Y).
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p = π, 0

p = 1− π, 1

0

1

p
p

Figure 37.4. Binary Symmetric Channel

37.4. Binary Symmetric Channel (BSC). In this case, p denotes the probabil-
ity of error.

C = max
p(x)

I(X;Y )

= max
p(x)

H(Y )−H(Y |X)

= max
p(x)

H(Y )−H(p)

= 1−H(p) bits, when X is uniform.

0

1

0

e

1

1− α

α

α

1− α

Figure 37.5. Binary Erasure Channel

37.5. Binary Erasure Channel. In Figure 37.5, ”e” means erasure. This bit is
erased, we have no idea about it.

C = max
p(x)

I(X;Y )

= max
p(x)

H(Y )−H(Y |X)

= max
p(x)

H(Y )−H(α)(37.1)
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For example, can H(Y ) be log 3? No! Let’s try to maximize it.

E ,

{
1, Y = e

0, otherwise

H(Y ) = H(Y ) + 0

= H(Y ) +H(E|Y )

= H(E, Y )

= H(E) +H(Y |E)

= H(α) + P (E = 0)H(Y |E = 0) + P (E = 1)H(Y |E = 1)

= H(α) + P (E = 0)H(Y |E = 0) + P (E = 1)× 0

= H(α) + P (E = 0)H(Y |E = 0)

= H(α) + P (E = 0)H(X)

= H(α) + (1− α)H(X)

Putting final expression into (37.1) leads to:

C = max
p(x)

H(Y )−H(α)

= max
p(x)

H(α) + (1− α)H(X)−H(α)

= max
p(x)

(1− α)H(X)

= 1− α bits, when X is uniform.

Part 12. Lecture 12 - 31.03.2016

Now add 12th slide.















METU EE533 INFORMATION THEORY - LECTURE NOTES 51

Part 13. Lecture 13 - 05.04.2016

Now add from 12th slide.
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38. Properties of Channel Capacity

C = max
p(x)

I(X;Y )

(1) C ≥ 0 since I(X;Y ) ≥ 0
(2) C = maxp(x) I(X;Y ) = maxp(x)H(X)−H(X|Y ) ≤ maxp(x)H(X) ≤ log |AX |
(3) C ≤ log |AY |.
(4) I(X;Y ) is a continuous function of p(x).
(5) I(X;Y ) is a concave function of p(x). For example, f(x) = 10− (x− 2)2

is a concave function. It means that you can find a maximum. Notice that
C is a functional of p(x).

39. Preview and Definitions

Consider a DMC channel meaning that (36.1) holds and we use the representation
shown in Figure 36.1.

39.1. Channel Code.

An (M,n) code for the channel consists of the followings. Note that a
channel is characterized by (AX , p(y|x), AY ).

(1) An index set for the messages. We haveM messages: {1, 2, . . . ,M}.
(2) An encoding function xn : {1, 2, . . . ,M} → AnX yielding code-

words xn(1), xn(2), . . . , xn(m). The set of codeword is called code-
book.

(3) A decoding function g : AnY → {1, 2, . . . ,M} which is a deter-
ministic rule that assigns a message estimate for each received vec-
tor.

Definition 22 (Channel Code).

Let n = 3, M = 3. Let index set be {1, 2, 3}. An example encoding function
is 1→ 000, 2→ 011, 3→ 101. Decoding function is 000→ 1, 001→ 3, . . .,
111→ 2.

Example 23.

39.2. Conditional Probability of Error.
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Conditional probability of error given message w is sent.

λw , P (g(Y n) 6= w|Xn = xn(w))

Let’s do some manipulations.

P (g(Y n) 6= w) =
∑

yn:g(yn)6=w

p(yn)

=
∑
yn

p(yn)I{g(yn) 6= w}(39.1)

Note that we use indicator function in (39.1). I{x} is 1 of x is correct,
otherwise it is 0.

λw =
∑
yn

p(yn|xn(w))I{g(yn) 6= w}

Definition 23 (Conditional Probability of Error).

39.3. Decoding Region.

Decoding region for message w is defined as the following. Then, we can
add another expression for conditional probability of error definition.

Dw , {yn : g(yn) = w}
λw = P (Y n /∈ Dw|Xn = xn(w))

Definition 24 (Decoding Region).

39.4. Maximal Probability of Error.

λ(n) , max
w∈{1,2,...,M}

λw

Definition 25 (Maximal Probability of Error).

Part 14. Lecture 14 - 07.04.2016

39.5. Average Probability of Error.
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P (n)
e ,

1

M

M∑
w=1

λw.

When W is uniformly distributed then,

P (W 6= g(Y n)) = P (n)
e

Definition 26 (Average Probability of Error).

Proof:

P (W 6= g(Y n)) =
∑
w

P (W 6= g(Y n), Xn = xn(w))(39.2)

=
∑
w

P (W 6= g(Y n)|Xn = xn(w))P (Xn = xn(w))

=
∑
w

λw
1

M

= λw

Notice that we do marginalization in (39.2). Also (Xn = xn(w)) ≡ (W = w).

λ(n) ≥ P (n)
e

Highlight 20.

39.6. Code Rate, Achievable Rate and Operational Capacity.

The rate of an (M,n) code,

R ,
log2M

n
bits per transmission channel use.
If we have 8 messages, M = 8 before coding each message occupy 3 bits.
M is number of messages, not number of bits.

Definition 27 (Code Rate).
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A rate R is said to be achievable if there exists a sequence of
(
d2nRe, n

)
codes such that λn tends to 0 (reliable transmission) as n→∞.
Notice that there is a sequence of codes, Cns, not scalar sequence like
an = 1 + 1/n.

Definition 28 (Achievable Rate).

The (”operational”) capacity of a DMC is the supremum (∼maximum) of
all achievable rates.
As a side note, basic difference between ”supremum” and ”maximum” term
is as follows: Consider a sequence an = 10− 1/n. Then, a1 = 10, a2 = 9.5.
Maximum an should be in set of an’s, this is the definition. With limit
idea, we say that its maximum is 10 but it is not because 10 is not in the
set. Its supremum is 10 and supremum means least upper bound.

Definition 29 (”Operational” Capacity).

40. Jointly Typical Sequences

Now, we are back to AEP ideas.

A
(n)
ε,XY , {(xn, yn) ∈ AnX×AnY :∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ < ε}.

Definition 30 (Jointly Typical Sequences).
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Let (Xn, Y n) be sequences of length-n drawn according to
p(xn, yn) =

∏n
i=1 p(xi, yi). We assume that xi’s are independent and

we have DMC. Then,

(1) P
(

(Xn, Y n) ∈ A(n)
ε,XY

)
→ 1 as n→∞.

(2)
∣∣∣A(n)

ε,XY

∣∣∣ ≤ 2n(H(X,Y )+ε).

(3) Let (X̃n, Y n) ∼ p(xn)p(yn), i.e., X̃n and Y n are independent but

X̃n has the same marginal distribution p(xn) as Xn. It corresponds

to someone next to generator ofXn generates another sequence X̃n.

(a) P
(

(X̃n, Y n) ∈ A(n)
ε,XY

)
≤ 2−n(I(X;Y )−3ε)

(b) P
(

(X̃n, Y n) ∈ A(n)
ε,XY

)
≥ (1− ε)2−n(I(X;Y )+3ε)

Notice that at the last statements probabilities go to 0 since mutual infor-
mation is non-negative as n goes to ∞. We say that X̃n and Xn are inde-
pendent (can we say this from independence of X̃n and Y n?). If (Xn, Y n)

are in typical set and since two Xs are independent, (X̃n, Y n) are not in
typical set.

Theorem 18 (Joint AEP).

Part 15. Lecture 15 - 12.04.2016

40.1. Proofs. Proof 1:

First, prove the first theorem which is P
(

(Xn, Y n) ∈ A(n)
ε,XY

)
→ 1 as n→∞.

Recall that if we say P (A) > 1− ε1, P (B) > 1− ε2 and P (C) > 1− ε3 then,
P (A ∩B ∩ C) > 1− (ε1 + ε2 + ε3).

T1 =
{

(xn, yn) : p(xn) = 2−n(H(X)±ε)
}

T2 =
{

(xn, yn) : p(yn) = 2−n(H(Y )±ε)
}

T3 =
{

(xn, yn) : p(xn, yn) = 2−n(H(X,Y )±ε)
}

P (T1) = P

({
(xn, yn) :

∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε

})
= P

(∣∣∣∣− 1

n
log p(Xn)−H(X)

∣∣∣∣ < ε

)
> 1− ε1, as n→∞(40.1)

(40.1) can be shown similarly for T2 as in (40.2).

P (T2) > 1− ε2, as n→∞(40.2)

Let’s form a super random variable as Z = (Xn, Y n), then we can write as follows
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P (T3) = P

(∣∣∣∣− 1

n
log p(Z)−H(Z)

∣∣∣∣ < ε

)
> 1− ε3, as n→∞

P (T3) = P

(∣∣∣∣− 1

n
log p(Xn, Y n)−H(X,Y )

∣∣∣∣ < ε

)
> 1− ε3, as n→∞

Then, we can write

A
(n)
ε,XY = T1 ∩ T2 ∩ T3

> 1− (ε1 + ε2 + ε3)

> 1− ε

Proof 2:

∣∣∣A(n)
ε,XY

∣∣∣ ≤ 2n(H(X,Y )+ε)

1 =
∑
xn,yn

p(xn, yn)

≥
∑

xn,yn∈A(n)
ε,XY

p(xn, yn)

We know that p(xn, yn) ≥ 2−n(H(X,Y )+ε).

1 ≥ 2−n(H(X,Y )+ε)
∑

xn,yn∈A(n)
ε,XY

1

≥ 2−n(H(X,Y )+ε)
∣∣∣A(n)

ε,XY

∣∣∣∣∣∣A(n)
ε,XY

∣∣∣ ≤ 2n(H(X,Y )+ε)

Proof 3:
Remember that X̃n is independent from Xn and Y n. Notice that PMF of X̃n

is same as PMF of Xn.
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P
(

(X̃n, Y n) ∈ A(n)
ε,XY

)
=

∑
x̃n,yn∈A(n)

ε,XY

pX̃n,Y n(x̃n, yn)

=
∑

x̃n,yn∈A(n)
ε,XY

pX̃n(x̃n)pY n(yn)

≤
∑

x̃n,yn∈A(n)
ε,XY

2−n(H(X)−ε)2−n(H(Y )−ε)

≤ 2−n(H(X)+H(Y )−2ε)
∑

x̃n,yn∈A(n)
ε,XY

1

≤ 2−n(H(X)+H(Y )−2ε)
∣∣∣A(n)

ε,XY

∣∣∣
Since

∣∣∣A(n)
ε,XY

∣∣∣ ≤ 2n(H(X,Y )+ε),

P
(

(X̃n, Y n) ∈ A(n)
ε,XY

)
≤ 2−n(H(X)+H(Y )−2ε−H(X,Y )−ε)

≤ 2−n(I(X;Y )−3ε)

Notice that in general I(X;Y ) ≥ 0. We can say that I(X;Y ) > 0 for a meaning-
ful channel, otherwise channel input and output becomes completely independent.
This type of channel is meaningless for us obviously. Also note that channel ca-
pacity, C, is maximum of the mutual information. So, we talk about a non-zero
value.

41. The Channel Coding Theorem (Fundamental Theorem in
Information Theory)

This theorem , a.k.a. Fundamental Theorem in Information Theory, states
that all rates below capacity C are achievable. That is, for every rate
R < C, there exists a sequence of

(
d2nRe, n

)
codes with λ(n) → 0.

Conversely, which is very important and makes this theorem powerful, any
sequence of

(
d2nRe, n

)
codes with λ(n) → 0 must have R < C.

Theorem 19 (The Channel Coding Theorem).

42. Proof of The Channel Coding Theorem

42.1. Outline of The Proof.

(1) Fix p(x) (arbitrarily) and assume that p(y|x) is given, in other words we
know the channel.

(2) Find the expected error probability, P
(n)
e = EC

[
P

(n)
e (C)

]
over all possible

codebooks. We will show Pe(n) < ε if R < I(X;Y )−∆, ∆ > 0.
(3) A few more steps in order to distinguish a sequence of codes with λ(n) → 0.
(4) Utilize p(x) maximizing I(X;Y ).
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42.2. Encoding and Decoding in The Proof.

(1) Random Coding: A random code c is generated by randomly generating
codewords. We don’t know whether is a good code or not. Even, it may
not be a one-to-one code which is meaningless for our purposes. They are
randomly generating. But we will see that occurrence of a codeword more
than once does not hurt us at the end of the day.

p(xn) =

n∏
j=1

p(xi), xn ∈ AnX

Generate 2nR codewords independently and write them into a matrix.

c =


x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)

...
...

...
...

x1(2nR) x2(2nR) . . . xn(2nR)


2nR×n

How many different c, codebooks, exists? We can generate |AX |n2nR

different codewords. If we take n = 1000 which larger in practical systems

and take R = 1/4 arbitrarily there are 21000×21000×1/4

different possibilities
which is a very HUGE number. Notice that we are not saying that all
codebooks are equally likely. Probability of a codeword is

p(c) =

2nR∏
w=1

n∏
j=1

p(xj(w))

=

2nR∏
w=1

p(xn(w))

AX = {0, 1}, p(0) = 1/6, n = 2, R = 1/2.

c =

[
. . . . . .
. . . . . .

]
2×2

P

([
0 0
0 0

])
=

(
1

6

)4

P

([
0 0
0 1

])
=

(
1

6

)3
5

6

As we can see, they are not equally likely.

Example 24.

(2) The codebook is revealed to the sender and receiver. They also know p(y|x).
(3) A message W is chosen according to uniform distribution meaning that

P (W = w) = 2−nR, w = 1, . . . , 2nR.
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We assume that a ”perfect” source coding block compress the original mes-
sage, to its entropy, prior to the channel coder. If messages do not have
uniform distribution, it means that message can be compressed further.

Highlight 21.

(4) The codeword is xn(w).
(5) A sequence Y n is received with distribution:

p(yn|xn(w)) =

n∏
j=1

p(yj |xj(w))

which corresponds to a DMC.
(6) Receiver performs typical set decoding rather than the optimal MAP de-

coding due to avoid difficulty in error probability analysis. Notice that we
are away from the optimal case. Here is the decoding rule: The estimate is
Ŵ if

•
(
xn(Ŵ ), yn

)
∈ A(n)

ε,XY AND

• There is no other index k such that (xn(k), yn) ∈ A(n)
ε,XY

A flag is raised if

• No such k such that (xn(k), yn) ∈ A(n)
ε,XY OR

• More than one k such that (xn(k), yn) ∈ A(n)
ε,XY

(7) There is a correct decision if Ŵ = W and incorrect if Ŵ 6= W OR flag is
raised.

Part 16. Lecture 16 - 14.04.2016

We evaluate the probability of error over all possible codebooks.

Pr(ε) = EC

[
P (n)
e (C)

]
=
∑
c

p(c)P (n)
e (c)(42.1)

Notice that in (42.1), p(c) stands for probability of a specific code c and P
(n)
e

stands for average probability of error for code c and we sum for all codes (c).
From (42.1),

Pr(ε) =
∑
c

p(c)
1

2nR

2nR∑
w=1

λw(c)(42.2)

=
1

2nR

2nR∑
w=1

∑
c

p(c)λw(c)(42.3)

In (42.2), we assume that all messages have equal probability (from
1

2nR
term).
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Let’s consider inner summation in (42.3) and expand as in (42.4).

∑
c

p(c)λw(c) = EC [λW (C)](42.4)

=
∑
c

p(c)P (g(Y n) 6= w|c,W = w)(42.5)

= P (g(Y n) 6= 1|W = 1)(42.6)

How transition from (42.5) to (42.6) is possible? Here is the answer: Does w
matters? We are investigating all the possible codes. Let’s consider the following
example:

Let’s consider two different codebooks: c1 and c2. Notice that their prob-
abilities are equal.

c1 =

[
0 0
0 1

]
, c2 =

[
0 1
0 0

]
Now let’s consider that there is an error in first codeword. For c1 case, we
transmit 00 but receive 01 and similarly for c2 we transmit 01 but receive
00. Now consider that there is an error in second codeword. For c1 case, we
transmit 01 but receive 00 and similarly for c2 we transmit 00 but receive
01. It turns out to be that probability of error in first codeword is equal to
probability of error in second codeword. Everything is symmetric is here.
That’s why we are fine with considering a single codeword.

Example 25.

Now combine (42.3) and (42.6) as (42.7).

Pr(ε) =
1

2nR

2nR∑
w=1

P (g(Y n) 6= 1|W = 1)(42.7)

= P (g(Y n) 6= 1|W = 1)

Let’s say that we send Xn(1) and receive Y n. Notice that Xn(1) is still random
variable.

C =


Xn(1)
Xn(2)

...
Xn(2nR)


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Pr(ε) =P (g(Y n) 6= 1|W = 1)

=P (((Xn(1), Y n) /∈ A(n)
ε,XY ) OR

((Xn(2), Y n) ∈ A(n)
ε,XY ) OR

((Xn(3), Y n) ∈ A(n)
ε,XY ) OR

...

((Xn(2nR), Y n) ∈ A(n)
ε,XY ))

Let’s remember union bound which is P (A) + P (B) ≤ P (A ∪B).

Pr(ε) ≤ P ((Xn(1), Y n) /∈ A(n)
ε,XY ) +

2nR∑
w=2

P ((Xn(w), Y n) ∈ A(n)
ε,XY )(42.8)

Remember that P ((Xn(1), Y n) /∈ A(n)
ε,XY ) ≤ ε and P ((Xn(w), Y n) ∈ A(n)

ε,XY ) ≤ 2−n(I(X;Y )−3ε).

(42.8) can be continued as (42.9)

Pr(ε) ≤ ε+ 2−n(I(X;Y )−3ε)2nR(42.9)

≤ ε+ 2−n(I(X;Y )−R−3ε)(42.10)

Notice that (42.10) becomes < ε as R < I(X;Y ).

42.3. Final Interpretation. IF R < I(X;Y ), Pr(ε) = P (ε|W = 1) ≤ 2ε. When
p(x) maximizing I(X;Y ) is used, C = maxp(x) I(X;Y ), then p(ε)→ 0 as R < C,
n→∞. We have found average error. But we are interested in maximum proba-
bility of error.

If P (ε) ≤ 2ε, then there exists at least one codebook with P
(n)
e (c) ≤ 2ε. For

example think that mean of 10 different, non-negative value is 7. One of them
should be at least smaller than or equal to 7. Otherwise, mean can’t be 7. Proof
by contradiction.

Now for this codebook which is P
(n)
e (c) ≤ 2ε, at least half of the codewords

should have codeword error probability ≤ 4ε. Think like the previous case. If mean
value of 10 different non-negative value is less than equal to 7, their sum is less than
equal to 70. Therefore, sum of 5 of them should be less than equal to 70 meaning
than they should be less than equal to 14 individually. Let’s put these codewords
(half of them) into a new codebook, c′. The rate of code c′ is denoted by R′ which
is

R′ =
log
(
2nR/2

)
n

= R− 1

n

But R′ → R as n→∞ meaning that R′ < C. In this code, c′, maximal error
probability is less than equal to 4ε.
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Overall, we showed that there exists a code with rate R′ = R− 1/n and λ(n) ≤ 4ε
for R < C. The supremum of R′ equals to C. This is why operational capacity was
defined as the supremum of achievable rate.

Part 17. Lecture 17 - 19.04.2016

43. Fano’s Inequality and The Converse

43.1. Lemma A (Another form of Fano’s Inequality). For a DMC with a

codebook C wit rateR and input messages equally likely. Let P
(n)
e = P (W 6= g(Y n)),

then

H(Xn|Y n) ≤ 1 + P (n)
e nR

Proof:
Consider a black box system with input S and output T . Then, Fano’s inequality

says that

H(S|T ) ≤ H(Pe) + Pe log (|As| − 1) .(43.1)

Let S = W and T = Y n,

H(W |Y n) ≤ H(P (n)
e ) + P (n)

e log (|Aw| − 1)

We know that H(P
(n)
e ) ≤ 1 and |Aw| = M = 2nR, then log (|Aw| − 1) ≤ nR.

Let’s consider DPI (Data Processing Inequality), we can say that

H(Xn|Y n) ≤ H(W |Y n).(43.2)

From (43.1) and (43.2),

H(Xn|Y n) ≤ 1 + P (n)
e nR.

43.2. Lemma B. Y k is result of passing Xk through a DMC. Then,

I(Xk;Y k) ≤ kC ∀p(xk)

Proof:
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I(Xk;Y k) = H(Y k)−H(Y k|Xk)(43.3)

= H(Y k)−
k∑
i=1

H(Yi|Xi)(43.4)

≤
k∑
i=1

H(Yi)−
k∑
i=1

H(Yi|Xi)(43.5)

≤
k∑
i=1

H(Yi)−H(Yi|Xi)

≤
k∑
i=1

I(Yi;Xi)

≤ kC

Notice that transition from (43.3) to (43.4) is property of DMC. (43.5) comes
from independence bound for entropy.

The capacity per transmission does not increase if a DMC is used many
times as opposed to source coding. We are already using the channel many
times to achieve capacity.

Highlight 22.

44. Proof of The Converse

Show that any sequence of (2nR, n) codes with λ(n) → 0 must have R ≤ C. We
are assuming that messages are equally likely. It means that if λ(n) → 0, then

P
(n)
e → 0.

H(W ) = H(W |Y n) + I(W ;Y n)

nR = H(W |Y n) + I(W ;Y n)

Notice that I(W ;Y n) ≤ I(Xn;Y n), then

nR ≤ H(W |Y n) + I(Xn;Y n)

From lemma A, H(W |Y n) ≤ 1 + P
(n)
e nR and from lemma B, I(Xn;Y n) ≤ nC.

Then,
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nR ≤ 1 + P (n)
e nR+ nC

R ≤ 1

n
+ P (n)

e R+ C

P (n)
e ≥ 1− C

R
− 1

nR
(44.1)

From (44.1), it can be said that as n→∞, P
(n)
e ≥ 1− C/R.

In general, P
(n)
e ' 0 if rate is under the capacity and P

(n)
e increases rapidly as

rate becomes larger than the capacity. This is the weak converse. Strong converse

says that P
(n)
e → 1 exponentially fast with n as R > C.

45. Properties of Good Codes

Good code means that we have reliable transmission.

nR = H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

Notice that H(W |Ŵ ) is 0 if P
(n)
e = 0.

nR = I(W ; Ŵ )

I(W ; Ŵ ) ≤ I(Xn;Y n) in general. But equality holds if one-to-one encoding is

used and we have an informational lossless system, i.e., Ŵ = g(Y n).

nR = I(Xn;Y n)

= H(Y n)−H(Y n|Xn)(45.1)

= H(Y n)−
n∑
i=1

H(Yi|Xi)(45.2)

≤
n∑
i=1

H(Y i)−
n∑
i=1

H(Yi|Xi)(45.3)

Transition from (45.1) to (45.2) is done using properties of DMC. Equality in
(45.3) holds if Yi’s are independent.

nR =

n∑
i=1

I(Xi;Yi)

≤ nC(45.4)

Equality in (45.4) holds if p(x) is capacity achievement distribution, i.e., maxi-
mizes I(Xi;Yi).
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In summary, to have a good code:

(1) Distinct messages have distinct codewords.
(2) Capacity achieving distribution p(x) should be used.
(3) Yis should be (seem) independent which is possible by independent

Xis.

Highlight 23.

46. The Joint Source-Channel Coding Theorem

Consider the system shown in Figure 46.

If V1, V2, . . . , Vn is an IID (not have to be independent indeed, it is valid
for more general case.) random sequence, then there exists a source-

channel code with P
(n)
e → 0 if H(V ) < C. Conversely, for any sequence

if H(V ) > C, then P
(n)
e > α > 0.

Idea is the combination of source coding + channel coding into single en-
coder. Source encoding compresses and channel coding decompresses gener-
ally. It says that we can think source coding and channel coding separately
as n goes to ∞.

Theorem 20 (The Joint Source-Channel Coding Theorem).

Proof: There is a typical set with
∣∣∣A(n)

ε,V

∣∣∣ < 2n(H(V )+ε). We will only encode the

sequences in A
(n)
ε,V . Then,

R =
1

n
log 2n(H(V )+ε)

= H(V ) + ε

If R < C (H(V ) + ε < C) then,

P (n)
e =P (V n 6= V̂ n)

=P (V n 6= V̂ n|V n ∈ A(n)
ε,V )P (V n ∈ A(n)

ε,V )

+ P (V n 6= V̂ n|V n /∈ A(n)
ε,V )P (V n /∈ A(n)

ε,V )(46.1)

≤P (V n 6= V̂ n|V n ∈ A(n)
ε,V ) + P (V n 6= V̂ n|V n /∈ A(n)

ε,V )(46.2)
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Notice that transition from (46.1) to (46.2) is very simple since a probability is
always less than or equal to 1 (second multiplicands in (46.1)).

Notice that since we have a reliable transmission P (V n 6= V̂ n|V n ∈ A(n)
ε,V ) < ε

and having a non-typical set is similar to P (V n 6= V̂ n|V n /∈ A(n)
ε,V ) < ε. Then for

sufficiently large n,

P (n)
e ≤ ε.

Proof of The Converse: Show that if P
(n)
e → 0 then, H(V ) < C for any

Xn(V n) : AnV → AnX and g(Y n) : AnY → AnV .

H(V n)

n
=

1

n
H(V n|V̂ n) +

1

n
I(V n; V̂ n)(46.3)

≤ 1

n

(
1 + P (n)

e n log |AV |
)

+
1

n
I(V n; V̂ n)(46.4)

≤ 1

n

(
1 + P (n)

e n log |AV |
)

+
1

n
I(Xn;Y n)(46.5)

≤ 1

n

(
1 + P (n)

e n log |AV |
)

+ C(46.6)

H(V ) ≤ 1

n
+ P (n)

e log |AV |+ C(46.7)

Transition from (46.3) to (46.4) is by Lemma A, from (46.4) to (46.5) is by
DPI,from (46.5) to (46.6) is by Lemma B and from (46.6) to (46.7) is by indepen-
dence bound for entropy.

There for as n→∞ and Pne → 0, then H(V ) < C. Notice that we didn’t specify
any coding (random coding etc.). This result shows that source coding and channel
coding are separable. The condition is always H(V ) < C.

Part 18. No Lecture on 21.04.2016

Part 19. Lecture 18 - 26.04.2016

47. Differential Entropy

It is extension of entropy to continuous random variable.
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X is a random variable with CDF, F (x) = P (X < x). If F (x) is continuous,
then X is said to be continuous. Let f(x) be derivative of F (X). When
the derivative is defined, f(x) is called probability density function (PDF).

Definition 31 (Continuous Random Variable).

The set for which f(x) > 0 is called the support set (S).

Definition 32 (Support Set).

Differential entropy of a continuous random variable X is defined as

h(X) , −
∫
S

f(x) log f(x) dx .

Definition 33 (Differential Entropy).

Differential entropy depends only on f(x). Hence, it is sometimes written
as h(f).

Highlight 24.

Let U be uniform over (0, a). In other words,

fU (x) =

{
1/a 0 ≤ x ≤ a
0 other.

h(U) = −
∫ a

0

1

a
log

1

a
dx = log a

Notice that h(U) is negative (it is entropy!) if a < 1 and positive oth-
erwise. As a→ 0, h(U)→ −∞, f(x)→ δ(x) (non-random).

Example 26 (Uniform Distribution).

Although minimum value of entropy is 0, differential entropy may go to
−∞.

Highlight 25.
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X ∼ Φ(x) = N(0, σ2) =
1√

2πσ2
e
−
x2

2σ2

h(X) = −
∫ ∞
−∞

Φ(x) ln Φ(x) dx

= −
∫ ∞
−∞

Φ(x)

[
−1

2
ln 2πσ2 +

(
−x2

2σ2

)]
dx

=
1

2
ln 2πσ2

∫ ∞
−∞

Φ(x) dx+
1

2σ2

∫ ∞
−∞

x2Φ(x) dx

=
1

2
ln 2πσ2 +

1

2σ2
E[X2]

=
1

2
ln 2πσ2 +

1

2

=
1

2
ln 2πeσ2 nats

=
1

2
log 2πeσ2 bits

Example 27 (Gaussian Distribution).

48. Typical Set

Let Xis be I.I.D. For ε > 0 and any n then

A(n)
ε ,

{
(x1, x2, . . . , xn) ∈ Sn :

∣∣∣∣− 1

n
log f(x1, x2, . . . , xn)− h(X)

∣∣∣∣ ≤ ε}
Definition 34 (Typical Set).

49. Volume of a Set

The volume, Vol(A), of a set A ∈ Rn is defined as

Vol(A) ,
∫
A

dx1 dx2 . . . dxn

It corresponds to counting idea in discrete case.

Definition 35 (Volume of a Set).
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If for single random variable volume corresponds to length, for bivariate
case corresponds to area and so on.

Highlight 26.

WLLN holds for continuous random variables. When Xis are drawn I.I.D
it can be written as

P

(∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− E[g(X)]

∣∣∣∣∣ ≤ ε
)
≥ 1− ε

Highlight 27.

50. AEP for Continuous Random Variables

(1) P
(
A

(n)
ε

)
> 1− ε for n sufficiently large.

(2) Vol
(
A

(n)
ε

)
≤ 2n(h(X)+ε) for all n.

(3) Vol
(
A

(n)
ε

)
≥ (1− ε)2n(h(X)−ε)

These are similar to discrete case.

Theorem 21 (AEP for Continuous Random Variables).

Proofs:

(1) It can be proven using WLLN.

(2) If (x1, . . . , xn) ∈ A(n)
ε then

2−n(h(X)+ε) ≤ f(x1, x2, . . . , xn) ≤ 2−n(h(X)−ε)

Remember that

P
(
A(n)
ε

)
≤ 1∫

A
(n)
ε

f(x1, x2, . . . , xn) dx1 dx2 . . . dxn ≤ 1

2−n(h(X)+ε)

∫
A

(n)
ε

dx1 dx2 . . . dxn ≤
∫
A

(n)
ε

f(x1, x2, . . . , xn) dx1 dx2 . . . dxn ≤ 1

2−n(h(X)+ε)Vol
(
A(n)
ε

)
≤
∫
A

(n)
ε

f(x1, x2, . . . , xn) dx1 dx2 . . . dxn ≤ 1

2−n(h(X)+ε)Vol
(
A(n)
ε

)
≤ 1

Vol
(
A(n)
ε

)
≤ 2n(h(X)+ε)
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Vol
(
A

(n)
ε

)
' 2nh as n→∞.

A hypercube of dimension n has volume an with side length a. The side

length of a hypercube with volume 2nh : l =
(
2nh
)1/n

= 2h, h = log l.
Low entropy means that probability is confined in a small volume.

Highlight 28.

51. Differential Entropy vs Discrete Entropy

p(k) = f(k∆)∆
∞∑

k=−∞

p(k) = 1, ∆→ 0

lim
∆→0

∞∑
k=−∞

f(k∆)∆ =

∫ ∞
−∞

f(x) dx = 1

Let,

X∆ : PX∆(k) = f(k∆)∆

then,

h(X) = H(X∆) + log ∆ as ∆→ 0

It can be used to compute differential entropy using discrete approach.

Highlight 29.

Proof is in the book.

52. Joint Differential Entropy

Let Xn , X1X2 . . . Xn. Then,

Xn ∼ f(x1, . . . , xn) = f(xn)
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h(Xn) = −
∫
. . .−

∫
f(x1, . . . , xn) log f(x1, . . . , xn) dx1 dx2 . . . dxn

= −
∫
f(xn) log f(xn) dxn

= E[− log f(Xn)]

h(Xn) = E[− log f(Xn)]

Highlight 30.

53. Conditional Differential Entropy

Let X,Y ∼ f(x, y)

h(X|Y ) = −
∫ ∫

f(x, y) log f(x|y) dx dy

= −
∫ ∫

f(x, y) log
f(x, y)

f(y)
dx dy

= h(X,Y )− h(Y )

h(X|Y ) = h(X,Y )− h(Y )

Highlight 31.

Let X1, . . . , Xn be multivariate normal distribution with mean
¯
µ and co-

variance matrix K. Xn ∼ N(
¯
µ,K).

h(Xn) =
1

2
log ((2πe)n|K|) bits

where |.| is the determinant operator.

Theorem 22.
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54. Relative Entropy and Mutual Information

Relative entropy (divergence) between densities f and g is defined as

D(f ||g) ,
∫
Sf

f(x) log
f(x)

g(x)
dx

Note that D(f ||g) is finite only if Sf ∈ Sg.

Definition 36 (Relative Entropy (Divergence)).

Part 20. Lecture 19 - 28.04.2016

I(X;Y ) ,
∫
f(x, y) log

f(x, y)

f(x)f(y)
dx dy

= D(f(x, y)||f(x)f(y))

= h(X)− h(X|Y )

= h(Y )− h(Y |X)

Definition 37 (Mutual Information).

I(X∆;Y ∆) = H(X∆)−H(X∆|Y ∆)

' h(X) + log ∆− [h(X|Y ) + ∆]

' h(X)− h(X|Y )

' I(X;Y )

Highlight 32.

D(f ||g) ≥ 0

and equality holds iff f(x) = g(x) almost everywhere. ”Almost everywhere”
means that they are same except one point, for example. In other words
having f(x) 6= g(x) for a set of probability zero is not a problem.

Theorem 23.

Proof:
Recall that lnx ≤ x− 1.
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−D(f ||g) =

∫
Sf

f(x) ln
g(x)

f(x)
dx

≤
∫
Sf

f(x)

(
g(x)

f(x)
− 1

)
dx

≤
∫
Sf

f(x)
g(x)

f(x)
dx−

∫
Sf

f(x) dx

≤
∫
Sf

g(x) dx−1

≤ (≤ 1)− 1

55. Brief Summary of Continuous Time Relations

I(X;Y ) ≥ 0

Highlight 33.

h(X) ≥ h(X|Y )

Highlight 34.

h(X1, . . . , Xn) =

n∑
i=1

h(Xi|X1, . . . , Xi−1)

Highlight 35.

h(X1, . . . , Xn) ≤
n∑
i=1

h(Xi)

and equality is hold iff Xi’s are independent.

Highlight 36.

h(X + c) = h(X)

Theorem 24.
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h(aX) = h(X) + log |a|
Notice that entropy does not change in discrete case if X is scaled.

Theorem 25.

Proof:

Let Y = aX then, fY (y) =
1

|a|
fX

(y
a

)
.

h(Y ) = −
∫
Sy

fY (y) log fY (y) dy

= −
∫
Sy

1

|a|
fX

(y
a

)
log

[
1

|a|
fX

(y
a

)]
dy

= −
∫
Sy

1

|a|
fX

(y
a

)[
log

1

|a|
+ log fX

(y
a

)]
dy

= − log
1

|a|

∫
Sy

1

|a|
fX

(y
a

)
dy−

∫
Sy

1

|a|
fX

(y
a

)
log fX

(y
a

)
dy

= − log
1

|a|
1−

∫
Sy

1

|a|
fX

(y
a

)
log fX

(y
a

)
dy

= log |a| −
∫
Sy

1

|a|
fX

(y
a

)
log fX

(y
a

)
dy(55.1)

= log |a| −
∫
Sx

fX(x) log fX(x) dx(55.2)

= log |a|+ h(X)

Notice that for transition from (55.1) to (55.2), x = y/a also dx = dy /a
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56. Hadamard’s Inequality

Consider a non-negative definite symmetric matrix K. Let
¯
X ∼ N(0,K)

h(X1, . . . , Xn) ≤
n∑
i=1

h(Xi)

1

2
log(2πe)n|K| ≤

n∑
i=1

1

2
log(2πe)σ2

Xi

1

2
log(2πe)n|K| ≤ 1

2
log

n∏
i=1

(2πe)Kii

(2πe)n|K| ≤ (2πe)n
n∏
i=1

Kii

|K| ≤
n∏
i=1

Kii

Example 28 (Hadamard’s Inequality).

Part 21. Lecture 20 - 03.05.2016

Let the random vector
¯
X ∈ Rn have zero mean covariance matrix

K = E[
¯
X

¯
XT ] meaning Kij = E[XiXj ]. Then

h(
¯
X) ≤ 1

2
log ((2πe)n|K|) .

with equality iff
¯
X ∼ N(

¯
0,K).

Theorem 26.

Proof:
g is an arbitrary PDF with covariance matrix K and ΦK is PDF of Gaussian

random vector with covariance K.

0 ≤ D(g||ΦK)

≤
∫
g ln

g

ΦK

≤
∫
g ln g −

∫
g ln ΦK

≤ −h(g)−
∫
g ln ΦK(56.1)
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ΦK(
¯
x) =

1

|2πK|1/2
exp

(
−1

2¯
xTK−1

¯
x

)
ln ΦK(x) = −1

2
ln |2πK| − 1

2¯
xTK−1

¯
x

= −1

2
ln |2πK| − 1

2

∑
i

∑
j

xiK
−1
ij xj

= −1

2

∑
i

∑
j

K−1
ij xixj −

1

2
ln |2πK|(56.2)

∫
g(

¯
x) ln ΦK(

¯
x) d

¯
x =

∫
g(

¯
x)

(
−1

2

)∑
i

∑
j

K−1
ij xixj d¯

x−
∫

1

2
ln |2πK|g(

¯
x) d

¯
x

= −1

2

∑
i

∑
j

K−1
ij

∫
g(

¯
x)xixj d

¯
x−

∫
g(

¯
x)

1

2
ln |2πK| d

¯
x(56.3)

= −1

2

∑
i

∑
j

K−1
ij

∫
ΦK(

¯
x)xixj d

¯
x−

∫
ΦK(

¯
x)

1

2
ln |2πK| d

¯
x

=

∫
ΦK(

¯
x)

−1

2
ln |2πK| − 1

2

∑
i

∑
j

xiK
−1
ij xj

 d
¯
x(56.4)

=

∫
ΦK(

¯
x) ln ΦK(

¯
x) d

¯
x(56.5)

= h(ΦK)

Notice that in (56.3),
∫
g(

¯
x)xixj d

¯
x is E[xixj ]. Since covariance matrices of both

distributions are same replace g(
¯
x) by ΦK(

¯
x). Similarly

∫
g(

¯
x) d

¯
x is 1 and we can

replace it too.
Transition from (56.4) to (56.5) is possible with help of (56.2).
Using (56.1),

0 ≤ −h(g) + h(ΦK)

h(g) ≤ h(ΦK)

For fixed variance(power) random variable, maximum entropy is obtained
from Gaussian random variable. Check the HW5-Q7.

Highlight 37.

57. The Gaussian Channel

Continuous channels can be split into two categories:

(1) Discrete Time, Continuous Amplitude (DTCA) Codewords are in

Rn like 2.5,
√

2,−1 etc. Noise is has similar values like n1, n2, . . ..
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(2) Continuous Time, Continuous Amplitude (CTCA) In that case both
codeword and noise are function of time like x(t) or n(t), respectively.

CTCA channels may be converted to DTCA channels. We focus on DTCA
channels since CTCA (real-life) channels can be converted to DTCA channels.
Conversion is based on orthonormal expansion idea.

58. The Gaussian Channel (DTCA)

Yi = Xi + Zi

Zi’s are I.I.D. and Zi ∼ N(0, N). Xi and Zi are assumed to be independent.
Notice that in this case Zi is AWGN and it is the worst disturbing noise due to
entropy limit actually.

In case there is no restriction on Xi’s, capacity is infinite.

(1) If N = 0, any real number can be transmitted hence capacity is ∞.
(2) If N > 0 then X values can be chosen to be infinitely support from each

other. Capacity is ∞.

Part 22. Lecture 21 - 05.05.2016

The most common input restriction is the average power constraint. For any
codeword (x1, . . . , xn) we should have

1

n

n∑
i=1

x2
i ≤ P(58.1)

and as n→∞ from WLLN,

E[X2
i ] ≤ P(58.2)

Note: For (58.1) and (58.2), I am not sure about case of case: X or x.

59. The Information Channel Capacity of The Gaussian Channel

C , max
p(x):E[X2]≤P

I(X;Y )

=
1

2
log

(
1 +

P

N

)
where N is variance of the noise.

Definition 38 (The Information Channel Capacity of The Gaussian Channel).

Proof:
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I(X;Y ) = h(Y )− h(Y |X)(59.1)

= h(Y )− h(Z|X)(59.2)

= h(Y )− h(Z)(59.3)

≤ 1

2
log(2πeσ2

Y )− 1

2
log(2πeN)(59.4)

Transition from (59.1) to (59.2) is possible since Y = X + Z and transition from
(59.2) to (59.3) is possible from since X and Z are independent.

(59.4) is valid due to upper bound for differential entropy found in previous
lectures. There is equality iff Y ∼ N(0, σ2

Y ). This is enabled by X ∼ N(0, σ2
X)

because since Z is zero mean, to have µY = 0, µZ = 0 and addition of two inde-
pendent Gaussian random variables make a Gaussian random variable. Therefore
to maximize the mutual information X should be a zero mean Gaussian random
variable.
σ2
X = P since X is a zero-mean and σ2

Y = P +N . Continuing from (59.4),

C =
1

2
log(2πe(P +N))− 1

2
log(2πeN)

=
1

2
log

(
1 +

P

N

)

(1) An index set {1, 2, . . . ,M}
(2) An encoding function {1, 2, . . . ,M} → Rn.

Xn(1), Xn(2), . . . , Xn(M) are codewords.
n∑
i=1

(xi(w))2 ≤ nP

||Xn(w)||2 ≤ nP
(3) A decoding function g, g : Rn → {1, 2, . . . ,M}.

R ,
log2M

n

Pe , P (Xn 6= g(Y n))

Definition 39 ((M,n) Code Satisfying The Power Constraint).

60. Sphere Packing Argument

Notice that the expression ||xn||2 ≤ nP defines a sphere (n-dimensional, hyper-
sphere). Consider Figure 60.
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A codeword xn is set. Then,

Y n = xn + Zn

E[Y n] = xn

By WLLN,

1

n

n∑
i=1

Zi → N as n→∞

||Zn||2 =

n∑
i=1

Z2
i ≤ n(N + ε) as n→∞(60.1)

Notice that (60.1) defines a sphere too.

||Y n||2 = ||Xn + Zn||2

=< Xn, Xn > + < Xn, Zn > + < Zn, Xn > + < Zn, Zn >

= ||Xn||2 + ||Zn||2 + 2 < Xn, Zn >

= ||Xn||2 + ||Zn||2 + 2

n∑
i=1

XiZi

= ||Xn||2 + ||Zn||2 + 2E[XiZi]

= (≤ nP ) +
(
≤ n

(
N +

ε

2

))
+ 2

(
≤ n

(
0 +

ε

4

))
≤ nP + n

(
N +

ε

2

)
+ 2n

(
0 +

ε

4

)
≤ n(P +N + ε)(60.2)

Notice that (60.2) defines a sphere too.
How many non-intersecting spheres can we fit?
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Vn = Anr
n

An(n(P +N + ε))n/2

(n(N + ε))n/2
=

(
P +N + ε

N + ε

)n/2

= 2

n
1

2
log

P +N + ε

N + ε



= 2

n
1

2
log

1+
P

N


as n→∞(60.3)

Notice that in (60.3),

C =
1

2
log

(
1 +

P

N

)

Part 23. Lecture 22 - 10.05.2016

61. Band-Limited Channels

A general band-limited channel is shown in Figure 61. This is a common model
when a finite bandwidth is available for communication.

Y (t) = (X(t) + Z(t)) ∗ h(t)(61.1)

In (61.1), X(t), Z(t) and h(t) denote signal waveform, noise waveform and im-
pulse response of an ideal band-pass filter. Later on, we will work in baseband
and it will be denoting its baseband version which is an ideal low-pass filter. Ideal
low-pass filter response is expressed in (61.2).

(61.2) H(f) =

{
1, if |f | < W

0, otherwise
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62. Sampling (Shannon-Nyqusit) Theorem

Consider a function band-limited to W , i.e G(f) = 0 for |f | > W . Then, g(t) is
completely specified by taking 1/2W seconds apart.

g(t) =

∫ ∞
−∞

G(f)ej2πft dt

g(t) =

∫ W

−W
G(f)ej2πft dt

g

(
n

1

2W

)
=

∫ W

−W
G(f)ej2πfn/2W dt

g(t) =
∞∑

n=−∞
g

(
n

1

2W

)
sinc(Wt− n)(62.1)

Let’s analyze (62.1). g

(
n

1

2W

)
implies that each g() can be chosen indepen-

dently. It means that in overall, a band-limited signal has 2W degrees of freedom per
second. sinc(Wt− n) are orthonormal basis functions for the set of band-limited
signals. An example sinc function is drawn in Figure 62.

In practical systems, pulses are time limited to [0, T ]. We want to have band-
limited signals which is not possible for time-limited signals. Hence, we consider
almost time-limited almost band-limited signals: Most energy is confined in [0, T ]
and [−W,W ]. In this case, basis functions are called as prolate spheroidal wave
functions (PSWF).

There are about 2WT orthonormal basis functions for the set of almost time-
limited almost band-limited signals when WT is large.

Consider Figure 62. Let

Xi ,
∫ T

0

X(t)Θi(t) dt .

We can define Yi and Zi similarly.
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In this setting, Zi’s are Gaussian since output of an LTI system is Gaussian
process when the input is. It is also white due to orthogonality because Zi’s are
become uncorrelated.

E[X2
i ] =

PT

2WT
(62.2)

=
P

2W
(62.3)

E[Z2
i ] =

N0/22WT

2WT

=
N0

2

Capacity for Yi = Xi + Zi is calculated as

Ci =
1

2
log

(
1 +

P/2W

N0/2

)
=

1

2
log

(
1 +

P

N0W

)
C =

1

T
2WT

1

2
log

(
1 +

P

N0W

)
bps

= W log

(
1 +

P

N0W

)
bps

(62.2) and (62.3) are valid since Θis are normalized. We can think (62.2) as the
following. Power is P and we are transmitting over interval T therefore total energy
is PT and this energy is shared by 2WT orthogonal and identical channels.

(62.4) C = W log

(
1 +

P

N0W

)
bps

Highlight 38 (Famous Capacity Relation).
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Part 24. Lecture 23 - 12.05.2016

63. Normalized Capacity

C

W
= log

(
1 +

P

N0W

)
bps/Hz

P = CEb(63.1)

C

W
= log

(
Eb
N0

+
C

W

)
bps/Hz

η ,
C

W
(63.2)

η = log

(
1 +

Eb
N0

η

)
2η = 1 +

Eb
N0

η

Eb
N0

=
2η − 1

η
(63.3)

In (63.1), C is in bps and Eb denotes energy per message bit. Spectral effi-
ciency in bps/Hz is defined in (63.2). (63.3) can be interpreted as the following.

lim
η→0

2η − 1

η
= ln 2(63.4)

= −1.6 dB

Notice that (63.4) can be obtained by using L’Hospital rule.

Let η = 1 bps/Hz then,(
Eb
N0

)
min

=
2− 1

1
= 0 dB.

Example 29.

Let η = 2 bps/Hz then,(
Eb
N0

)
min

=
22 − 1

1
= 1.8 dB.

Example 30.

Notice that from (62.4) C depends on W both proportionally and inversely
proportionally. So what happens at the end of the day?
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lim
W→∞

C = lim
W→∞

log

(
1 +

P

N0W

)
1/W

(63.5)

=
P

N0 ln 2
(63.6)

Again, L’Hospital rule is used from transition to (63.5) to (63.6).

64. Parallel Gaussian Channels

In this problem, there are K independent AWGN channels as shown in Figure 64.

E[Zi] = 0

E[Z2
i ] = Ni

k∑
i=1

Pi ≤ P

Let Xk be de vector of X1, X2, . . . , Xk. Then,

C = max
p(Xk):

∑k
i=1 E[X2

i ]≤P
I(Xk;Y k)
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I(Xk;Y k) = h(Y k)− h(Y k|Xk)

= h(Y k)− h(Zk)

≤
k∑
i=1

h(Yi)− h(Zk)(64.1)

≤
k∑
i=1

h(Yi)−
k∑
i=1

h(Zi)(64.2)

≤
k∑
i=1

h(Yi)−
k∑
i=1

1

2
log 2πeNi

h(Yi) ≤
1

2
log 2πe(Pi +Ni)(64.3)

I(Xk;Y k) ≤
k∑
i=1

1

2
log 2πe(Pi +Ni)−

k∑
i=1

1

2
log 2πeNi

Equality holds in (64.1) if Yi’s are independent. Transition from (64.1) to (64.2)
is due to independence of Zis. Equality holds in (64.3) if Yi, i.e., Xi is Gaussian.
Maximum of mutual information can be found as in (64.4).

I(Xk;Y k) =

k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
(64.4)

C = max
P1,...,Pk:

∑k
i=1 Pi≤P

k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
Lagrange multipliers can be used to solve this maximization problem.

L(P1, . . . , Pk) =

k∑
i=1

1

2
log

(
1 +

Pi
Ni

)
+ λ

(
k∑
i=1

Pi − P

)
By taking derivative with respect to Pi,

ln 2

2

1

1 +
Pi
Ni

1

Ni
+ λ = 0

c
1

Ni + Pi
+ λ = 0(64.5)

(64.5) means that Ni + Pi = v (I don’t know why!). Notice that summation of
Pi and Ni can’t be negative since they are powers. So, suggest the following Pi
selection

Pi = (v −Ni)+ =

{
v −Ni, v > Ni

0, otherwise.
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Check the KarushKuhnTucker (KKT) conditions, they are satisfied. So we have
our solution. Solution is visualized in Figure 64. It is called as ”water filling
solution.”

Part 25. Lecture 24 - 17.05.2016

65. Channels with Colored Gaussian Noise

Y k = Xk + Zk

In that case, KZ is not diagonal. Then,

h(Zk) 6=
k∑
i=1

h(Zi).

There is a total power constraint such that

k∑
i=1

E[X2
i ] ≤ P

tr(KX) ≤ P

65.1. Part a.

I(Xk;Y k) = h(Y k)− h(Y k|Xk)

= h(Y k)− h(Zk)

= h(Y k)− 1

2
log
(
(2πe)k|KZ |

)
KY = E[Y k(Y k)T ]

= E[Xk(Xk)T ] + E[Xk(Zk)T ] + E[Zk(Xk)T ] + E[Zk(Zk)T ]

= KX + 0 + 0 +KZ

= KX +KZ

h(Y k) ≤ 1

2
log
(
(2πe)k|KX +KZ |

)
(65.1)

I(Xk;Y k) ≤ 1

2
log
(
(2πe)k|KX +KZ |

)
− 1

2
log
(
(2πe)k|KZ |

)
(65.2)

(65.2) holds with equality iff Xk ∼ N(
¯
0,KX). We should find KX .
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65.2. Part b. Whitening of Zk is meaning that finding a orthonormal basis Q.

KZ = QΛQT(65.3)

In (65.3), Q is a unitary matrix, i.e., QQT = I or QTQ = I and Λ is a diagonal
matrix. Let’s observe the effect of whitening as an exercise

Z̃k , QTZk

KZ̃k
= E[Z̃k(Z̃k)T ]

= E[QTZk(Zk)TQ]

= QTE[Zk(Zk)T ]Q

= QTKZQ

= QTQΛQTQ

= IΛI

= Λ(65.4)

Consider (65.1)

|KX +KZ | = |KX +QΛQT |
= |QQTKXQQ

T +QΛQT |
= |Q(QTKXQ) + Λ)QT |

Remember that |AB| = |A||B| then,

|KX +KZ | = |Q||QTKXQ+ Λ||QT |
= 1|QTKXQ+ Λ|1
= |QTKXQ+ Λ|(65.5)

65.3. Part c. Remember that tr(AB) = tr(BA)

tr(QTKXQ) = tr(KXQQ
T )

= tr(KX)(65.6)

tr(KX) ≤ P means that tr(QTKXQ) ≤ P

65.4. Part d. Let A , QTKXQ. Our problem is now maximization of |A+ Λ|
with tr(A) ≤ P .

From Hadamard’s inequality,

|A+ Λ| ≤
k∏
i=1

(Aii + Λii)(65.7)
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(65.7) holds with equality iff A+ Λ is diagonal. Since Λ is diagonal, it means
that A should be diagonal.

Remember the equality in (65.5) and (65.6)

|KX +KZ | ≤
k∏
i=1

(Aii + Λii)

Also note that

|KZ | = |Λ|.

C = max
A

1

2
log

(
(2πe)n

k∏
i=1

(Aii + Λii)

)
− 1

2
log

(
(2πe)n

k∏
i=1

Λii

)

= max
A:tr(A)≤P

1

2
log

k∏
i=1

Aii + Λii
Λii

= max
A:tr(A)≤P

k∑
i=1

1

2
log

(
1 +

Aii
Λii

)
(65.8)

Notice that in (65.8) A is a diagonal matrix and it turns out to be same as the
previous water filling problem. Then,

Aii = (v − Λii)
+

Finally,

KX = QAQT

where A is diagonal and KX is not.
We use whitening and solution is same as the previous uncorrelated problem.

65.5. If noise is a WSS Gaussian Process. Now we talk about continuous time
channels directly.

Y (t) = X(t) + Z(t)

where Z(t) is WSS. It will have autocorrelation function KZ(τ) and power spec-
tral density SX(f) which is related to autocorrelation function obviously. It turns
out to be that water filling idea is valid in this scenario too. We work in a fre-
quency domain. We can think that it consists of very small sub-bands as shown in
Figure 65.5. They are like independent Gaussian channels.

So, water filling argument almost is valid as long as there are parallel channels.
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66. Rate Distortion Theory (Lossy Source Coding)

The idea is representation of continuous random variable with discrete numbers
(bits).

Consider a Gaussian random variable. It takes values from −∞ to ∞. There-
fore, it is not possible to represent a value drawn from a normal distribution and
reconstruct it without any error. So, coding is lossy. A continuous source can never
be represented with finite number of bits.

67. Performance Measures

One measure is number of used bits and another one is representation error.
Rate R is defined as the ratio of number of bits / number of source symbols.

The other measure is distortion D which is some cost function which shows the
difference between the original and reconstructed source symbol.

68. Quantization

We want to minimize MSE = E[(X − X̂)2]. In quantization, we choose points
and map values to these points. These reconstruction points are used later.

Let’s consider case where X ∼ N(0, σ2).

68.1. R = 0. In that case, we use 0 bits, 20 = 1 reconstruction points. A logical
reconstruction point is 0 for this specific example. We can find the same answer
(taking 0) by using MMSE estimator

X̂MMSE = E[X]

= 0
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68.2. R = 1. We have 21 = 2 reconstruction points. How should we choose them?
They should be symmetric, right? Let’s say that they are −a and a then use MMSE
rule.

a = E[X|X > 0](68.1)

68.3. R = 2. We have 4 points: −c, −b, b, c. What are these numbers now? It is
not obvious as the previous examples.

Let’s say that we know the points. For an observation, which point should
be used for assignment to minimize MSE? We can easily find regions for each
reconstruction points (divide at the middles?). Similarly, a given region we can
find optimal reconstruction point as in (68.1). However when a reconstruction
point is changed, boundary of region is also changed. It is an iterative approach.

This algorithm is used to find regions and reconstruction points iteratively.
Here is the approach:

(1) Start with some reconstruction points.
(2) Determine the region for each point.
(3) Determine the optimal reconstruction point for each region.
(4) Repeat the previous steps until convergence.

Highlight 39 (Lloyd’s algorithm).

69. Some Distortion Definitions

Let’s we have a source generatingX1, X2, . . .. These are continuous I.I.D. random
variables. Interesting thing that, rate distortion theory will be hold for discrete
random variables too.

69.1. Distortion Function.

A distortion function (measure) is a mapping

d : AX ×AX̂ → R+

where AX is source alphabet, AX̂ is representation alphabet and R+ is
non-negative real numbers.
d(x, x̂) is a measure of the cost of representing x with x̂.

Definition 40 (Distortion Function).
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69.1.1. Hamming (Probability of Error) Distortion.

d(x, x̂) ,

{
0, x = x̂

1, otherwise

This seems to be logical for discrete valued random variables.

69.1.2. Squared Error Distortion.

d(x, x̂) , (x− x̂)2

69.1.3. Distortion for Sequences.

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i)

or

d(xn, x̂n) = max d(xi, x̂i)

Definition 41 (Distortion for Sequences).

Part 26. No Lecture on 19.05.2016

Part 27. Lecture 25 - 24.05.2016

69.2. Rate-Distortion Code.

A (2nR, n) rate distortion code has an encoding func-
tion f : AnX → {1, 2, . . . , 2nR} and a decoding function
g : {1, 2, . . . , 2nR} → An

X̂
}.

D = E[d(Xn, X̂n)]

=

{∑
xn p(x

n)d(xn, x̂n) if X is dicrete.∫
AnX

f(xn)d(xn, x̂n) dxn if X is continous.

Definition 42 (Rate-Distortion Code).



METU EE533 INFORMATION THEORY - LECTURE NOTES 93

Example 31.

Notice that f−1
n (i) associate to assignment region. Similarly, gn(i) gives

as actual reconstruction sequence with length n. It can be also shown as
X̂n(i). It is referred as codewords, vector quantization, estimate of Xn or
reconstruction of Xn.

Highlight 40.

69.3. Achievable Rate.

A rate distortion pair (R,D) is said to be achievable if there exists a se-
quence of (2nR, n) rate distortion codes (fn, gn) with

lim
n→∞

E [d(Xn, gn(fn(Xn))] ≤ D

Notice that in lossless case D was zero.

Definition 43 (Achievable Rate).

69.4. Distortion Region.
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The rate distortion region for a source is the closure of the set of achievable
rate distortion pairs (R,D). A general plot is shown in Figure 44.

Definition 44 (Distortion Region).

69.5. Operational Rate Distortion Function.

R(D) , inf
C:EC(d(Xn,X̂n))≤D

R(C)

Definition 45 (Operational Rate Distortion Function).

69.6. Operational Distortion Rate Function.

D(R) , inf
C:rate(C)≤R

D(C)

Definition 46 (Operational Distortion Rate Function).

Operational Rate Distortion Function and Operational Distortion Rate
Function determine the boundaries of the rate distortion region.

Highlight 41.

69.7. The Information Rate Distortion Function.

RI(D) , min
p(X̂|X):

∑
x,x̂ p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)(69.1)

In (69.1), it is assumed that p(x) is given.

Definition 47 (The Information Rate Distortion Function).
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Operational rate distortion function is equal to information rate distortion
function.

R(D) = RI(D)

Theorem 27.

69.8. Binary Source with Hamming Distortion. Let’s consider a binary source
with p and use Hamming distortion criteria.

E[d(X, X̂)] ≤ D

E[d(X, X̂)] = 0× P (X = X̂) + 1× P (X 6= X̂)

0× P (X = X̂) + 1× P (X 6= X̂) ≤ D

P (X ⊕ X̂ = 1) ≤ D(69.2)

I(X; X̂) = H(X)−H(X|X̂)

= H(p)−H(X ⊕ X̂|X̂)(69.3)

≥ H(p)−H(X ⊕ X̂)(69.4)

H(X ⊕ X̂) ≤ H(D)(69.5)

I(X; X̂) ≥ H(p)−H(D)

Transition from (69.3) to (69.4) is done by using the fact that conditioning
reduces the entropy. For (69.5) let’s assume that D < 0.5. If it was greater than
0.5, we can always switch it. (69.5) is found by using (69.2).

Can we find p(X̂|X) that achieves I(X; X̂) = H(p)−H(D)? This problem can
be modeled as a BSC as shown in Figure 69.8.

I(X; X̂) = H(p)−H(D)

P (X = 0) = p

= rD + (1− r)(1−D)

r =
p− (1−D)

2D − 1

We know that 0 ≤ r ≤ 1 and 0 ≤ 1− r ≤ 1 and assumed that D ≤ 0.5
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0 ≤ p+D − 1

2D − 1
≤ 1(69.6)

0 ≤ p−D
1− 2D

≤ 1(69.7)

From (69.6) and (69.7), we can find that D ≤ p and D ≤ 1− p. Therefore if

D ≤ min(p, 1− p), I(X; X̂) = H(p)−H(D) with

p(x|x̂) =

{
D, x 6= x̂

1−D, otherwise

Let’s consider a binary source with p and use Hamming distortion criteria.

R(D) =

{
H(p)−H(D), D < min(p, 1− p)
0, otherwise

(69.8)

Highlight 42 (Binary Source with Hamming Distortion).
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Let P (X = 0) = 1/3 and we want D ≤ 3/4. Select R = 0 meaning that
there is a single reconstruction point. Since P (X = 1) > P (X = 0), select-

ing X̂ = 1 makes sense. Therefore

D = P (X 6= X̂)

=
1

3

≤ 3

4

Rate 0 satisfies this distortion. Also from (69.8), since the desired D is not
smaller than 1/3, R(3/4) = 0.

Example 32.

Part 28. Lecture 26 - 26.05.2016

69.9. Gaussian Source with MSE. Let X ∼ N(0, σ2). Use MSE distortion.

E[(X − X̂)2] ≤ D

R(D) = min
f(X̂|X):E[(X−X̂)2]≤D

I(X; X̂)

I(X; X̂) = h(X)− h(X|X̂)

=
1

2
log(2πeσ2)− h(X|X̂)

=
1

2
log(2πeσ2)− h(X − X̂|X̂)

h(X − X̂|X̂) ≤ h(X − X̂)

I(X; X̂) ≥ 1

2
log(2πeσ2)− h(X − X̂)

h(X − X̂) ≤ h(N(0, E[(X − X̂)2]))

h(N(0, E[(X − X̂)2])) =
1

2
log(2πeE[(X − X̂)2])

h(N(0, E[(X − X̂)2])) ≤ 1

2
log(2πeD)

I(X; X̂) ≥ 1

2
log(2πeσ2)− 1

2
log(2πeD)

R(D) ≥ 1

2
log

(
σ2

D

)
(69.9)

Can we reach the RHS of (69.9)? We can model this problem as a Gaussian
channel shown in Figure 69.9.



98 ALPER YAZAR

I(X; X̂) = h(X)− h(X|X̂)

= h(X)− h(Z)

=
1

2
log 2πeσ2 − 1

2
log 2πeD

=
1

2
log

σ2

D

If σ2 −D ≥ 0, then

R(D) =
1

2
log

(
σ2

D

)

If not, R(D) = 0.
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Let X ∼ N(0, σ2). Use MSE distortion.

R(D) =


1

2
log

(
σ2

D

)
, D < σ2

0, otherwise

R =
1

2
log

σ2

D(R)

σ2

D(R)
= 22R

D(R) = 2−2Rσ2

Increasing representation by 1 bit decreases distortion by 1/4 (6 dB).

Highlight 43 (Gaussian Source with MSE).

Part 29. To Do’s

• Some figures do not have captions and visible figure numbers since no
caption is defined for them. Solve this.
• Check KZ and Z̃k and terms in (65.4). Subscript or superscript?
• Case of Xs in (69.1).

Part 30. Materials

This part is added for author, not reader. Stop reading!

70. Lecture 01

• 205-120-1455656445-77
• 205-120-1455656447-98
• 209-120-1456254230-12
• 209-120-1456254306-57
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71. Lecture 02

• 205-120-1455656449-73
• 205-120-1455656451-23
• 205-120-1455656453-98
• 209-120-1456422159-69

72. Lecture 03

• 205-120-1455656455-56
• 205-120-1455656457-26
• 205-120-1455656459-74
• 205-120-1455656461-38
• 205-120-1455656463-82
• 209-120-1456861030-36
• 209-120-1456861391-18

73. Lecture 04

• 205-120-1455656465-41
• 205-120-1455656467-84
• 205-120-1455656469-95
• 209-120-1457159259-18

74. Lecture 05

• 205-120-1455656471-96
• 205-120-1455656473-56
• 205-120-1455656475-56
• 209-120-1458065534-18
• 209-120-1458065588-94

75. Lecture 06

• 205-120-1455656477-94
• 205-120-1455656479-23
• 209-120-1458151335-59

76. Lecture 07

• 205-120-1455656481-45
• 205-120-1455656483-11
• 205-120-1455656485-90
• 205-120-1455656487-47
• 209-120-1458151512-62
• 209-120-1458151561-49

77. Lecture 08

• 205-120-1455656489-54
• 205-120-1455656491-93
• 209-120-1458327865-37
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78. Lecture 09

• 205-120-1455656497-84
• 205-120-1455656499-35
• 205-120-1455656501-70
• 205-120-1455656503-46
• 209-120-1459188716-82

79. Lecture 10

• 205-120-1455656505-93
• 205-120-1455656507-47
• 209-120-1459589607-65

80. Lecture 11

• 205-120-1455656509-44
• 205-120-1455656511-67
• 205-120-1455656513-70
• 209-120-1459598832-40

81. Lecture 12

No related material.

82. Lecture 13

• 205-120-1455656515-43
• 205-120-1455656517-33
• 209-120-1460147110-10
• 209-120-1460147184-52

83. Lecture 14

• 205-120-1455656519-95
• 205-120-1455656521-18
• 209-120-1460147220-40

84. Lecture 15

• 205-120-1455656523-70
• 205-120-1455656525-78
• 205-120-1455656527-58
• 205-120-1455656529-55
• 209-120-1460475526-05
• 209-120-1460475560-61

85. Lecture 16

• 205-120-1455656531-73
• 205-120-1455656533-54
• 209-120-1460660764-71
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86. Lecture 17

• 205-120-1455656535-11
• 205-120-1455656537-30
• 205-120-1455656539-49
• 205-120-1455656541-33
• 209-120-1461870723-02
• 209-120-1461870799-44

87. Lecture 18

• 205-120-1455656543-75
• 205-120-1455656545-60
• 205-120-1455656547-24
• 205-120-1455656549-23
• 209-120-1461873830-92
• 209-120-1461873843-13

88. Lecture 19

Lecture notes of Emre.

89. Lecture 20

• 205-120-1455656551-14
• 205-120-1455656553-17
• 209-120-1462633861-33
• 209-120-1462633892-71

90. Lecture 21

• 205-120-1455656556-49
• 205-120-1455656558-20
• 209-120-1462633966-28

91. Lecture 22

• 205-120-1455656560-01
• 205-120-1455656562-83
• 209-120-1463299563-95
• 209-120-1463299501-67

92. Lecture 23

• 205-120-1455656564-40
• 205-120-1458504560-15
• 209-120-1463300839-51
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93. Lecture 24

• 205-120-1458504562-70
• 205-120-1458504564-57
• 205-120-1458504566-08
• 205-120-1458504568-34
• 209-120-1463655368-46
• 209-120-1463655419-93

94. Lecture 25

• 205-120-1458504570-01
• 205-120-1458504572-12
• 205-120-1458504574-64
• 209-120-1464899057-02
• 209-120-1464899092-37

95. Lecture 26

Lecture notes of Emre.

Part 31. Code Appendix

. MATLAB Code Figure 2.1

1 p = linspace (0 ,1 ,10000) ;

2 h = −1∗ p .∗ log2 (p) − 1 ∗ (1−p) .∗ log2 (1−p) ;

3 close a l l ;

4 plot (p , h , ’ l i n ew id th ’ , 2 )

5 grid on

6 xlabel ( ’ $p$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ , 12)

7 ylabel ( ’$H(p) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i z e ’ , 12)

8 t i t l e ( ’$H(p) $ vs $p$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Fonts i ze ’ , 12)

E-mail address: alperyazar@gmail.com
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