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Part 1. 18/02/14 Lecture Note

1. Introduction

Sensor is a device that measures a physical quantity and converts it into a signal.
Physical aspects that sensors measures are light, motion, temperature, electro-

magnetic field, vibration, sound, gravity, etc.
Major sensor types are:

• Electromagnetic Sensor: Antenna
• Acoustic Sensor: Microphone
• Ultrasound Sensor: Sonobouy 1

• Light Sensor: Camera, Photodiode

Sensor Array is a set of sensors placed in a certain array geometry to gather
information in such a way that a single sensor con not.

Figure 1.1. A Typical Array with a Single Signal and Interference Source

As a footnote, distances greater than 10λ is a good assumption for far field.
Array Aperture is the space occupied by the array.
Generally speaking, as aperture size increases resolution increases. However, as

intersensor (?) distance, d, exceeds λ/2 there is a spatial aliasing.

2. Array and Signal Categories

Arrays and array problems can be classified according to different parameters.

(1) Array Geometry
(a) Linear (1D) Array
(b) Planar (2D) Array
(c) Volumetric (3D) Array

When array geometry is fixed there is a Cramer-Rao Bound related with
geometry.

(2) Sensor Placement
(a) Uniform Spacing: Most robust placement

1http://en.wikipedia.org/wiki/Sonobuoy
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Figure 1.2. Sensors Separated By d, Array Aperture is 3d

(b) Non-Uniform Spacing: Good to increase aperture size but spatial alias-
ing problem may occur.

(c) Random Spacing: Throw very cheap array from plane for example.
(3) Temporal Characteristics (Related with Time) of Signal

(a) Known Signal: Ex: Emergency Beacon Signal
(b) Signals with Unknown Parameters
(c) Signals with Known Structure: Ex: QPSK
(d) Random Signal: Most of time it is.

(4) Spatial Characteristics (Related with Space) of Signal
(a) Plane Wave Signals From Known Directions
(b) Plane Wave Signals From Unknown Directions
(c) Spatially Spread Signals

Figure 2.1. Near and Far Field Sources

As shown in Figure 2.1 sources can be classified into two main categories: Near
and Far field sources. In near field case, time delay isn’t a linear function. But from
observed data it is possible to find both distance and angle information. There are
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devices that use that technique. In far field case, we assume that source is far away
enough to consider waves as plane waves. There is an additional distance between
two sensors D. And time delay is simply τ = D/c. However, it is only possible to
find DOA in that case. If source distance is greater than 10λ it can be assumed as
far field source.

Similarly for interference we have the same spatial and temporal characteristics.

3. Objectives of Array Processing

(1) Passive Arrays
(a) Detect
(b) Estimate
(c) Localize
(d) Track

(2) Active Arrays (Transmit a Signal First)
(a) Detect
(b) Estimate
(c) Localize
(d) Track

• Detect the presence of a signal in the presence of noise and interference.
• Demodulate the signal and estimate the information from waveform in the

presence of noise and interference.
• A binary communication signal arrives over multipath, detect the informa-

tion sequence.
• Estimate the direction of arrival (DOA) of multiple plane wave signals in

the presence of noise.
• Construct the temporal and spatial spectrum estimate of the incoming sig-

nal and noise field. (Spatial t-F Spectrum (?))
• Direct the transmitted signal to a specific spatial location.
• Find the location of the source signal (Localization)

Some applications:

• Radar
• Sonar
• Communications
• Acoustics
• Radio Astronomy
• Medical Diagnosis and Treatment

Array geometry establishes constraints on the array performance. Therefore it
should be selected appropriately.

By designing complex weights for the sensor outputs, one can filter the signal
such that signal coming from a particular angle is enhanced. (Beamforming)

4. Array Model

θ and φ is defined as Elevation Angle and Azimuth Angle respectively as shown
in Figure 4.1.

(4.1) θ = (φ, θ) Direction of Arrival (DOA) Angle

Relation between Cartesian and spherical coordinates is given in (4.2).



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 9

Figure 4.1. Spherical Coordinate System

(4.2)
x = rcosφsinθ
y = rsinφsinθ
z = rcosθ

The direction of plane wave propagation in unit direction g is given as

(4.3) g =

cosφsinθsinφsinθ
cosθ


The signal arrives to each sensor with a time delay τn,

(4.4) τn =
−gTPn

c

where c is the velocity of the propagation, Pn is the position vector for nth sensor.

(4.5) Pn ,

xnyn
zn


Combining (4.4) and (4.5).

(4.6) τn = −1

c
[Pxncosφsinθ + Pynsinφcosθ + Pzncosθ]

Let the frequency of the narrow band signal be ω = 2πf rad/s. (Why narrowband
???) In that case,
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(4.7) ωτn = −ω
c
gTPn = −2π

f

c
gTPn = −2π

λ
gTPn

where λ = c/f m.
Also wave number, k, is defined as

(4.8) k ,
2π

λ
g =

2π

λ

cosφsinθsinφsinθ
cosθ


5. Array Steering Vector (Array Manifold)

(5.1) a(ω, φ, θ) =


e−jωτ0

e−jωτ1

e−jωτ2

...
e−jωτM−1


Mx1

Combining (4.7), (4.8) and (5.1),

(5.2) a(ω, φ, θ) =


ejk

TP0

ejk
TP1

ejk
TP2

...

ejk
TPM−1


Similarly, combining (4.5), (4.8) and (5.2)

(5.3) a(ω, φ, θ) =


ej

2π
λ [Px0cosφsinθ+Py0sinφsinθ+Pz0cosθ]

ej
2π
λ [Px1cosφsinθ+Py1sinφsinθ+Pz1cosθ]

ej
2π
λ [Px2cosφsinθ+Py2sinφsinθ+Pz2cosθ]

...

ej
2π
λ [PxM−1cosφsinθ+PyM−1sinφsinθ+PzM−1cosθ]


Note that array steering vector depends on frequency (equally λ). We will drop

ω but it is always there, not forget!
Only DOA information in a vector, but location information isn’t available (r is

missing.). It seems that with a single array you can’t find location. Well, how radar
find? It is a single sensor. This is for passive scenario, but radar is an active device.
Find time between transmission and reception. Radar is transmitting directional
pulse.

Array steering vector incorporates all the spatial characteristics of array.
When there are multiple plane wave sources at directions (φ1, θ1) and (φ2, θ2)

Array Steering Matrix A(φ, θ) can be constructed from steering vectors. 2

2As mentioned, we drop ω here but it is there.
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(5.4) A(φ, θ) =
[
a(φ1, θ1) a(φ2, θ2)

]
Notice that we are talking about co-channel signals. They occupy same band

but they are at different locations.

6. Narrow Band Assumption

(6.1) B × TMAX << 1

where B is the bandwidth of the signal in Hz. And TMAX is the maximum time
to travel across the array. 3

Given the above assumption array output in time can be written as

(6.2) y(t)Mx1 = A(φ, θ)Mxns(t)nx1 + e(t)Mx1

where e(t) is noise, s(t) is source signal and A(φ, θ) is array steering matrix. N
is the number of snapshots (observation). n is the number of sources.

Also t = kT and k = 1, 2 . . . N . T should be selected using Nyquist rate.
We know that t is used for continuous time signals. But we also use (6.2) in

discrete time. If we place kT , it is discrete time. But we are going to keep t as it is
but we think in discrete time. Abuse of notation! We take t = 1, 2 . . . N . Because
it is derived when everything is in analog. Wehen digital domain is used, t was
thought as discrete time, who cares? In that case, dimension of matrices at (6.2)
will change related with N . (Not sure?) Given dimensions are for analog case.

7. Questions

• For which equations narrow band signal is assumed?

8. Check

• Matrix sizes in (6.2). Especially N or n.

3Proof is later.
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Part 2. 25/02/14 Lecture Note

9. Array Factor

Array factor is a function of antenna (sensor) positions and weights used for
each antenna signal. In array factor definition we assume that each sensor has
same beam shape and doesn’t affect array factor. It doesn’t depend on individual
sensor characteristics. Elements are omni-directional.

Figure 9.1. Sensor Weighting

(9.1) BAF (ω, φ, θ) , wHa(ω, φ, θ) =

M−1∑
j=0

w∗j e
jkTPj

where w is weight vector. Elements are complex numbers. Because the signals
have assumed to be demodulated and they are in baseband. To have directional
characteristics you should play with phase. If you use phase and amplitude you can
control beam better. Only amplitude isn’t sufficient.

(9.2) w ,


w0

w1

w2

. . .
wM−1


Mx1

For a uniform linear array (ULA) with uniform weighting. In other words wj =
1/M where j = 0, 1, . . .M − 1. To look at broadside direction (forward direction)
just sum up all sensor without no phase shift.

(9.3) BAF (φ) =
1

M

sin

(
M
d

2

2π

λ
cosφ

)
sin

(
d

2

2π

λ
cosφ

) 0 ≤ φ ≤ π
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Notice that in (9.3), φ = 0 for broadside direction. It is taken from Van Trees
book. But, we take φ = 90 for broadside direction. One may change cosφ with
sinφ our convention.

Also notice that you can’t differentiate elevation angle. No θ in (9.3).
Plot of (9.3) is given in Figure 9.2. Code is given in the Appendix section.
BwHP is the power beam width. It is found using 3dB bandwidth. That is where

BAF (φ) drops to 1/
√

2.
Similarly, BwNN is the null to null beam width. Also, BwNN ' 2BwHP .
Nulls are at λ/Md, 2λ/Md, . . .. They are symmetric around y-axis.

Figure 9.2. Array Factor for ULA with Uniform Weighting

10. Array Factor Parameters

(1) 3dB beamwidth (BwHP )
(2) Null to null beamwidth (BwNN )
(3) Distance to first sidelobe
(4) Height of the first sidelobe (Sidelobe level)
(5) Location of remaining nulls
(6) Rate of decrease of sidelobe
(7) Grating lobes. Grating lobes are very close to mainlobe in terms of ampli-

tude. One reason is spatial aliasing. Violation of λ/2 rule.

Polar plot of Figure 9.2 is given in Figure 10.1. Code is given in the Appendix
section.

As a note, narrowest beamwidth is obtained when wj = 1/M but in that case
sidelobe level is largest (∼ 13dB). Decreasing sidelobe level increases beamwidth
generally, filter design story...

Also notice that narrowest beamwidth is obtained at broadside direction (except
for circular arrays maybe). If you turn your ULA to another direction electronically,
beamwidth will increase.
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Figure 10.1. Polar Array Factor for ULA with Uniform Weighting

BwNN/2 provides a measure of the ability of the array to resolve two plane waves
signals. This is referred to Rayleigh Resoluiton limit. Two plane wave signals are
considered resolvable if the peak of the second beam pattern lies at/or outside the
null of the first beam patters. (Separation > BwNN/2).

Methods which can resolve sources closer that BwNN/2 which beyond Rayleigh
resolution limit are called super resolution methods.4.

Also, CRB is the ultimate limit for unbiased estimators. The connection between
Rayleigh limit and CRB is done in D.N. Swingler, 1994.

The possible resolution of super resolution algorithms is approximately 1/10 of
the array bandwidth under the ideal conditions.

Note that resolution is related with two signal sources overlapping in time and
frequency (same signal). If there are two signals with different frequencies for
example, they are already separable no need for resolution in spatial domain.

11. Approximate Formulas for Beamwidth

M element planar array with element positions given as follows:

(11.1) Pk =

[
Xk

Yk

]
k = 1, 2 . . . ,M

Array center is the origin and following relation is valid.

(11.2)

M∑
k=1

Pk = 0

Equation (11.2) says that elements are symmetric with respect to origin.

4Chadwick, 2007
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Figure 10.2. CRB and Superresolution Techniques

The array half power beamwidth for an elevation angle θ = 90◦ is given as in
(11.3).

(11.3) BwHP ' 1.15
√

2
λ

2π

1

D(φ)

where

(11.4) D(φ) ,

√√√√ 1

M

M∑
k=1

d2
k(φ)

where

(11.5) dk(φ) , xkcosφ+ yksinφ

For ULA, Equation (11.3) reduces to

(11.6) BwHP '
λ

(M − 1)d|sinφ|
Also as shown in Figure 11.1, narrowest beamwidth is obtained when φ = 90◦.

12. (Beam) Array Pattern

Array output depends on the DOA of the incident plane wave hence array acts
as a spatial filter. Array output is proportional to Array Pattern for a spatial
direction. You can filter two sources in spatial domain even if they have same
signals in time and frequency domain. Also it is possible to increase SNR with
sensor arrays.
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Figure 11.1. Narrowest Beamwidth at Broadside

(12.1) BAP (ω, φ, θ) = R0(φ, θ)ω∗0e
jkTP0 + . . .+RM−1(φ, θ)ω∗M−1e

jkTPM−1

where Rj(φ, θ) is element pattern for jth sensor.
Also similar to array factor equations, ω in Equation (12.1) may drop in future,

but it is there.
If we assume identical element patterns as follows:

(12.2) R0(φ, θ) = RM−1(φ, θ)

then,

(12.3) BAP (φ, θ) = R0(φ, θ)×BAF (φ, θ)

Array Pattern = Element Pattern x Array Factor

Figure 12.1. Effect of Element Pattern on Array Pattern



METU EE604 SENSOR ARRAY SIGNAL PROCESSING - LECTURE NOTES 17

13. Array Performance Measures

(1) Directivity
(2) Array gain versus spatially white noise (Each element pick-ups uncorrelated

white noise)(Kind of SNR)
(3) Sensitivity

13.1. Directivity. Directivity of an ULA with d = λ/2 (inter-sensor distance) is
given as follows:

(13.1) D =
1∑M−1

j=0 |wj |2
=

1

wHw

where w is Mx1 weight vector. Also notice that uniform weighting maximizes the
directivity (also BwHP ) of ULA at expense of increased sidelobe level. (wj = 1/M
then D = M)

For general case, directivity is proportional with number of sensors.

13.2. Array Gain. Array processing improves the SNR by adding signals coher-
ently and noise incoherently. The improvement is measured by array gain. Let the
sensor output be for single source case:

(13.2) yMx1(t) = aMx1(φ, θ)s1x1(t) + eMx1(t)

Input SNR (at the sensor input)

(13.3) SNRinput =
σ2
s

σ2
e

After beamforming:

(13.4) x(t) = wHy(t) = wHas(t) + wHe(t)

For radar case w = a is the optimum weight vector.
If wHa = 1, then

(13.5) SNRinput =
σ2
s∑M−1

j=0 |wj |2σ2
e

Array Gain is defined as

(13.6) Aw =
SNRoutput
SNRinput

=
1∑M−1

j=0 |wj |2

In specific case, Aw = M . In general Aw ≤M .
Observations:

(1) Array gain under spatially white noise is valid for arbitrary arrays as long
as |wHa|2 = 1.

(2) For ULA with d = λ/2 white noise array gain is identical to array directivity.
(3) For ULA with d 6= λ/2, D 6= Aw.
(4) Aw is maximum for uncorrelated noise when uniform weighting is used
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13.3. Sensitivity (Robustness). Sensitivity to gain, phase and imprecise posi-
tioning of the sensors is important. For small variances and arbitrary array geom-
etry.

(13.7) TSE = A−1
w

For ULA with uniform weighting TSE = 1/M .

14. Narrowband Model

We consider the problem of locating and radiating sources by using an array of
M passive sensors. Source signals are sampled both in space and time by the sensor
array.

Assumptions:

(1) The sources are assumed to be situated in the far field of the array.

(14.1) distance >
2D2

λ

where D is the array aperture. This is limit distance but 10λ is safer
distance.

(2) Both sensors and sources are in the same plane.
(3) Sources are point emitters.
(4) Propagation medium is homogeneous. If medium is dispersive it is not true

case. For example, sound waves in sea water.
(5) The number of sources, n, is assumed to be known. Otherwise it should be

estimated.
(6) Array is calibrated. In other words, sensors can be assumed to be LTI

systems. Their locations are known.

Let τk denotes the time that wave travels from reference point to sensor k. Sensor
output is

(14.2) ȳk(t) = h̄k(t) ∗ x(t− τk) + ēk(t)

where h̄k(t) (impulse response of sensor) is known and x(t − τk), τk and ēk(t)
are unknown.

Write Equation (14.2) in Fourier domain using CTFT.

(14.3) Ȳk(ω) = H̄k(ω)X(ω)e−jωτk + Ēk(ω)

Notice that Equation (14.3) or (14.2) (???) shows wideband model. It is a model
which shows time information. Narrow band model doesn’t show time information,
it shows phase information. But phase information is ambiguous (2π periodicity).
Time is unambiguous information. If you find time, you can find both angle and
distance to the transmitter. In narrowband, you can estimate phase.
x(t) is bandpass signal shown in Figure 14.1.
s(t) is baseband signal shown in Figure 14.2.
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Figure 14.1. Bandpass Spectrum

Figure 14.2. Baseband Spectrum

15. Modulation

Let us assume that the information signal is divided into two parts: sI(t), sQ(t);
in phase and quadrature part respectively.

(15.1) s(t) = sI(t) + jsQ(t)

s(t) is complex signal.
Also note the following relation.

(15.2) s(t)ejωct
CTFT←−−−→ S(ω − ωc)

Modulation is take signal and multiplies it with a complex exponential.

16. Questions

• Why bars in Equation (14.2)?
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Part 3. 04/03/14 Lecture Note

17. Modulation

FIGURE HERE? FIGURE HERE?
Let,

(17.1) x(t) , 2Re{s(t)ejωct}

(17.2) x(t) = s(t)ejωct + s∗(t)e−jωct

Taking CTFT of Equation (17.2).

(17.3) X(ω) = S(ω − ωc) + S∗(−(ω + ωc))

Using (15.1)

(17.4) x(t) = 2[sI(t)cosωct− sQ(t)sinωct]

(17.5) x(t) = 2[s2
I(t) + s2

Q(t)]1/2cos

(
ωct+ tan−1 sQ(t)

sI(t)

)

(17.6) x(t) = a(t)cos(ωct+ φ(t))

18. Demodulation

Let’s demodulate x(t),

(18.1) x(t)e−jωct

Taking CTFT,

(18.2) X(ω) = S(ω) + S∗(−ω − 2ωc)

Now put Equation (17.3) in Equation (14.3).

(18.3) Ȳk(ω) = H̄k(ω) [S(ω − ωc) + S∗(−ω − ωc)] e−jωτk + Ēk(ω)

In time domain, demodulated signal is

(18.4) ỹk(t) = ȳk(t)e−jωct

Again in frequency domain,

(18.5) Ỹk(ω) = H̄k(ω + ωc) [S(ω) + S∗(−ω − 2ωc)] e
−j(ω+ωc)τk + Ēk(ω + ωc)

After the low-pass filtering

(18.6) Yk(ω) = Hk(ω + ωc)S(ω)e−j(ω+ωc)τk + Ek(ω + ωc)
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19. Narrow Band Model

Now assume that the received signal is narrow band. Then |S(ω)| decreases
rapidly with ω. Mathematically, B∆Tmax < 1.

Under that assumption, it means that impulse response only affect at carrier
frequency.

(19.1) Yk(ω) = Hk(ωc)S(ω)e−jωcτk + Ek(ω + ωc)

Note that delay term is constant, not depends on signal.
Remark: If the signal is broadband but we use narrow band filters, we obtain

(19.1) if

• Sensor (filter) frequency response if flat over the passband. Hk(ω + ωc) =
Hk(ωc).
• Signal spectrum varies over passband.

(19.1) in time domain can be written as:

(19.2) yk(t) = Hk(ωc)s(t)e
−jωcτk + ek(t)

Also t = pT is possible in (19.2) where p = 1, . . . N .
Now let’s assume that sensors are identical, i.e., Hj(ωc) = Hk(ωc).
In case of ULA, normalizing with respect to first sensor signal
FIGURE HERE

(19.3) a(φ) =


1

e−jωcτ1

e−jωcτ2

...
e−jωcτM−1


where M is the number of sensors.
Then, assuming single source

(19.4) y(t)Mx1 = a(φ)Mx1s(t)1x1 + e(t)Mx1

In general, assume that n signal source, then

(19.5) y(t)Mx1 = A(φ)Mxns(t)nx1 + e(t)Mx1

where A(φ) =
[
a(φ1) a(φ2) . . . a(φn)

]
Is it feasible to find 5 parameters from single observation, generally not! Gener-

ally, more observation is required.
For subspace techniques we are going to use covariance matrices. In general you

should at least M observations for M sensors.
10:40
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(19.6)

y(t) =


1 1 . . .

ej2π/λdcosφ1 ej2π/λdcosφ2 . . .
ej2π/λ2dcosφ1 ej2π/λ2dcosφ2 . . .

...
...

...
ej2π/λ(M−1)dcosφ1 ej2π/λ(M−1)dcosφ2 . . .


M×n


s1(t)
s2(t)
s3(t)

...
sn(t)


n×1

+


e1(t)
e2(t)
e3(t)

...
en(t)


M×1

where t = 1, 2, . . . N and N is the number of observations.
Equation (19.6) is given for ULA with M sensors, n sources. Note that, in

that equation steering vector has Vandermonde structure. This special for ULA.
This is useful if we have coherent sources. In that case, covariance matrix is rank
deficient. This is one of the major problems in array processing. ULA is the only
(?) geometry for perfect solution of coherent signals due to Vandermonde structure.
You can apply forward-backward spatial smoothing.

Problem is the given N observations of the array output, find φi and si(t) where
i = 1, 2, . . . n.

Figure 19.1. ULA Delay Relation

As mentioned,

(19.7) τk = −g
TPk
c

= −dcosφ
c

(k − 1)

Then,

(19.8) a(φ) =
[
1 ejωcdcosφ/c ej2ωcdcosφ/c . . .

]T
where ωc = 2πfc and λ = c/fc.
Then,

(19.9) a(φ) =
[
1 ej2π/λdcosφ ej2π/λ2dcosφ . . .

]T
(19.10) a(φ) =

[
1 ejωp ej2ωp . . .

]T
(???)

where ωp is spatial frequency.
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20. Sampling

20.1. Sampling in Time. Nyquist Theorem holds. fs > 2fc. (Assume narrow-
band, largest frequency is fc)

20.2. Sampling in Spatial Domain. In (19.10), a(φ) is uniquely specified if and
only if |wp| < π. Any succeeding sensor phase difference should be less than π.
Then |fp| < 1/2,

(20.1) d|cosφ| < λ/2

(20.1) holds for any φ if d < λ/2. This is the condition for no spatial aliasing
(Spatial Nyquist Theorem).

Figure 20.1. Angle Aliasing Under Noise-Free and Noisy Cases

Finding the aliased angles (20.2),

(20.2) ej2π/λdcosφ1 = ej2π/λd(cosφ2+λ/dr

where r is an integer.
As an example, cosφ1 = cosφ2 + λ/dr. Let take λ = d, r = 1.
cosφ1 − cosφ2 = 1, then (φ1 = 0◦, φ2 = 90◦), (φ1 = 90◦, φ2 = 180◦). Several

angles could also be found taking −2 ≤ r ≤ 2. As you can see d = λ is a problematic
choice.

In theory, knowing exactly aliased angle pairs may be sufficient to eliminate
problem. However, in practice, noisy environment case there will be a continuous
range of aliasing angles instead of finite angle values due to noise etc. as shown in
Figure 20.1.

21. Spaces of matrix, A

21.1. Null Space, N(A). is the space spanned by x which satisfies Ax = 0. De-
noted by N(A). Let A be matrix represented by SVD.

(21.1) AM×N =
[
u1 u2

] [Σ 0
0 0

] [
vH1
vH2

]
= u1ΣvH1
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where size of u1 is r, u1 is M − r, vH1 is r and vH2 is N − r.
Then

(21.2) Dim of N(A) = N −# of singular values different than 0

The basis vectors of N(A) are the eigenvectors in V that corresponds to zero
singular values. Then v2 is the orthonormal basis for N(A). N(A) = span(v2).

21.2. Row Space, R(AH). is spanned by the singular vectors in V with singular
values different than zero. Then v1 is the orthonormal basis for R(AH). R(AH) =
span(v1). This is space spanned by rows of A.

Note that v1 and v2 are orthonormal (null space and row space is orthonormal).

21.3. Column (Range) Space, R(A). is the subspace spanned by the columns
of A. Then u1 is the orthonormal basis for R(A). R(A) = span(u1).

21.4. Left-Null Space, N(AH). u2 is the orthonormal basis for N(AH). N(AH)
= span(u2).

The subspaces R(A) and N(AH) are orthogonal and they span CM . The sub-
spaces R(AH) and N(A) are orthogonal and they span CN .

If R = AAH , then it is positive semi-definite M × M . Its eigenvectors are
orthogonal.

(21.3) RM×M =
[
u1 u2

] [ΣΣH 0
0 0

] [
vH1
vH2

]
In that case, range space of R is equivalent to signal space of R which is spanned

by vectors u1. Similarly, null space of R is equivalent to noise space of R which
is spanned by vectors u2. Also these two spaces are orthogonal to each other
(previously not for arbitrary rectangular matrix.). Also, uH1 u2 = 0.

11:40

22. Projection Matrices

Theorem 1
Let {a1, a2, . . . , an} be any basis for subspace W of CM . Form M × n matrix.

(22.1) A =
[
a1 a2 . . . an

]
The projection matrix for W is A(AHA)−1AH = P .
Theorem 2
Let {u1, u2, . . . , un} be a unitary basis for subspace W of CM . Form the matrix

U =
[
u1 u2 . . . un

]
. Then UUH = P is the orthogonal (???) projection matrix

for the W.
Both theorem 1 and 2 projects onto signal space.
Any projection matrix satisfies:

• P 2 = P , Idempotent
• P is symmetric
• Eigenvalues of P is 0 or 1.
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(22.2) R = E{y(t)y(t)H} = AE{s(t)s(t)H}AH + E{e(t)e(t)H}
Note that in (22.2), noise and signal is assumed to be uncorrelated.

(22.3) R = ARsA
H + σ2I = UΛUH

where

(22.4) Λ ,


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λM


Also white noise is assumed at (22.3).
Also

(22.5) R = UsΛsU
H
s + UeΛeU

H
e

where Us corresponds to signal space eigenvectors and UsΛsU
H
s is signal space.

Columns of Us spans R(A). Similarly, Ue corresponds to noise space eigenvectors
and UeΛeU

H
e is noise space. Columns of Ue spans N(AH).

Now let’s define,

(22.6) Π , UsU
H
s = A(AHA)−1AH

Note that (22.6) is a projection matrix onto signal space. Also,

(22.7) Π⊥ , UeU
H
e = I −A(AHA)−1AH

Note that (22.7) is a projection matrix onto noise space.
Notice that Π + Π⊥ = I.
For no noise, the array output is confined to n-dimensional subspace of complex

M dimensional space( where n is the number of sources and M is the number of
sensors) which is spanned by the steering vectors. n < M should be satisfied for a
solution. For no noise case, rank(R) is n. R is rank deficient in that case (???).

23. Vandermonde Matrix

A matrix A ∈ CM×N is called Vandermonde if it has the structure

(23.1) A =


1 1 . . . 1
z1 z2 . . . zN
z2

1 z2
2 . . . z2

N
...

...
...

...

zM−1
1 zM−1

2 . . . zM−1
N


If zk 6= zp ∀k, p k 6= p and M ≥ N , then rows of A are linearly independent

and rank(A) = N . Note that ULA steering matrix has this form and forward-
backward spatial smoothing (FBSS) algorithm can be applied in this case which
solves multipath problems.
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24. Least Squares Solution (LS)

Ax = B where AM×N , xN×P , BM×P . Solution is pseudo-inverse.

(24.1) x = A+B = (AHA)−1AHB = v1Σ−1uH1 B

where A = UΣV H .
(24.1) is called Moore-Penrose Pseudo-Inverse. It sets small eigenvalues to zero.

By that way, ||Ax − B||2 is minimized. In other words, Ax = B + ∆B problem is
solved in least-squares sense such that min||∆B||2 is obtained.

25. Total Least Squares Solution (TLS)

Consider the minimum perturbations ∆A, ∆b. Then minimize ||∆A∆B||2, s.t.
(A+ ∆A)x = B + ∆B.

In TLS, there is a an also error on A. But in LS, A is error free.
Let,

(25.1)
[
A B

]
=
[
ũ1 ũ2

] [Σ̃1 0

0 Σ̃2

] [
ṽH1
ṽH2

]
where A is M ×N , B is M × P . Size of ũ1 is N , ũ2 is M −N , ṽH1 is N and ṽH2

is P .
Partition ṽ2 as

(25.2) ṽH2 =
[
ṽH21 ṽH22

]
where size of ṽH21 is N and size of ṽH22 is P .
Then,

(25.3) xTLS = −ṽ21ṽ
−1
22

if ṽ−1
22 exists.

If you know A very well, use LS otherwise use TLS.

26. Quadratic Minimization

Let A be N × N Hermitian symmetric positive semi-definite matrix. xN×M ,
BN×K , CM×K . Then, minimize xHAx s.t. BHx = CH . It corresponds to beam-
forming. For example x may be weight vector. Minimize sidelobes, except at signal
of interest (SOI). Optimum solution is,

(26.1) xo = A−1B(BHA−1B)−1CH

Proof

(26.2) L = xHAx+ λH(BHx− CH) + λT (BTx∗ − CT )

(26.3)
∂L
∂x

= xHA+ λHBH = 0

Then,
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(26.4) AHx+Bλ = 0

(26.5) x = −(AH)−1Bλ

If AH = A,

(26.6) x = −A−1Bλ

Apply the constraint

(26.7) BHx = CH

(26.8) −BHA−1Bλ = CH

(26.9) λ = −(BHA−1B)−1CH

(26.10) x = A−1B(BHA−1B)−1CH

27. Check

Equation (19.10): ωp?
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Part 4. 11/03/14 Lecture Note

28. Cramer-Rao Lower Bound (CRB or CRLB)

CRLB is a lower bound on the accuracy of any unbiased estimator. CRLB
provides an algorithm independent benchmark against which different algorithms
can be compared. Performance is usually measured by root-mean-squared error
(RMSE).

(28.1) MSE = E{(θ̂ − θ)2} = V ar(θ̂) +Bias2(θ̂)

where θ is true and θ̂ is estimated value.

Figure 28.1. An Example RMSE Plot

Assume that θ̂ is an unbiased estimate of θ and let the covariance matrix of θ̂,
Cθ̂.

(28.2) Cθ̂ = E{(θ̂ − θ)(θ̂ − θ)T }
Then there is a matrix such that Cθ̂ ≥ CRB in the sense that Cθ̂ − CRB is

a positive semi-definite matrix. (Diagonal values of this matrix is greater than
diagonal values of that matrix. Individual elements variances are greater.)

29. Fisher Information Matrix

Let x be vector of observations, θ be the vector of parameters.

(29.1) J = FIM(θ) = E{gx,θgTx,θ}
where

(29.2) gx,θ , ∇θlnfx,θ(x, θ) = ∇θP (x, θ)

where fx,θ(x, θ) is likelihood function. gx,θ is called as gradient of the log likeli-
hood function. Elements of J matrix

(29.3) Jij , E

{
∂P (x, θ)

∂θi

∂P (x, θ)

∂θj

}
= −E

{
∂2P (x, θ)

∂θi∂θj

}
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Then,

(29.4) [CRB(θ)]ii = [J−1]ii

Notice the indices in (29.4), we are only interested in the variances.

If θ̂i is the ith component of θ, then its variance is lower bounded by:

(29.5) V ar{θ̂i} ≥ FIM(θ)−1
ii

30. CRB Example

Let

(30.1) y(t) = A(φ)s(t) + e(t)

(30.2) Ry = E{y(t)y(t)H}) = ARsA
H +Re = ARsA

H + σ2
eI

In (30.2) it is assumed that signal and noise are uncorrelated and noise is white
noise both temporally and spatially.

Then,

(30.3) A =
[
a(φ1) a(φ2) . . . a(φn)

]
Let define a vector α

(30.4) α ,
[
φT ρT σ2

e

]
where ρ is vector composed of the elements of Rs.

(30.5) φ ,
[
φ1 φ2 . . . φn

]T
Then,

(30.6) FIMp,k = N × Tr
{
∂Ry
∂αp

R−1
y

∂Ry
∂αk

R−1
y

}

(30.7) CRB(φ) =
σ2

2N

{
Re
[
(DHΠT

AD)� (RsA
HR−1

y ARs)
T
]}−1

where N is the number of samples (snapshots) and � is Hadamard product
operator.

And

(30.8) D ,
[
d1 d2 . . . dn

]
(30.9) dk ,

∂a(φk)

∂φk

(30.10) ΠA , A(AHA)−1AH



30 ALPER YAZAR

(30.11) ΠT
A , I −ΠA

For a single source,

(30.12) CRB ' 1

2×N × SNR× ||ȧ(φ)||2

where ȧ(φ) is derivative of the steering vector. ȧ(φ) = d1.
For M element ULA,

(30.13) CRB ' λ2

8π2 ×N × SNR× cos2φ× d̄2

where

(30.14) d̄2 ,
M∑
m=1

d2
m

where dm is the distance of the mth sensor to the origin.

Figure 30.1. Approximate CRB of ULA with Single Source

When the measurements are (locally) loosely dependent on the parameter, FIM
approaches to zero or has singular values as shown in Figure 30.1. There are
singular points for CRB. φ = 180◦ (endfire) for a ULA is a singular point. CRB
is not predicting correctly for this case. For example, MUSIC algorithm can find
at those points with accuracy of approximately 10◦. Therefore, approximation is
invalid in that angles.
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31. Classical Methods for DOA Estimation

• Amplitude Based Methods
• Phase Based Methods
• Frequency Based Methods (Doppler)
• Time Based Methods
• Hybrid Methods

32. Common Direction Finding Techniques

• Directional Antenna (Sensor)
• Wattson-Watt
• Pseudo-Doppler
• Interferometer

33. Directional Antenna (Sensor)

A single directional antenna is rotated in order to find the DOA angle.

Figure 33.1. Directional Antenna

10:40
Advantages:

• High sensitivity due to antenna directivity
• Simple and cheap (Single channel system)
• Resolution of multipath signals
• Same antenna can be used for direction finding and monitoring.

Disadvantages:

• Probability of intercept is inversely proportional with directivity
• Fails for short duration signals
• Mechanical rotation is problematic.

34. Butter Array

Instead of a single antenna, an antenna array with different phase shifters and
combiners are used to obtain directional patterns.
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Figure 34.1. Butter Array

35. Monopulse

A variation of beamformer direction finding. Usually used in radar systems for
tracking sources. Two overlapping antenna beams are formed which are steered
slightly in different directions. This method is taking the difference between the
output of two beams.

Figure 35.1. Two Beams

Response if the monopulse system is given as

(35.1) b(φ) =
1

∆

(∣∣∣∣aH(φ+
∆

2
)y

∣∣∣∣2 − ∣∣∣∣aH(φ− ∆

2
)y

∣∣∣∣2
)

where ∆ is the offset angle.
Then,

(35.2) b(φ) =
1

∆

(
B(φ+

∆

2
)−B(φ− ∆

2
)

)
where B(φ) is the beam pattern. And if ∆ is small, then

(35.3) b(φ) ' Ḃ(φ)

Output is positive if the emitter is to the right of the boresight and negative
otherwise.

This method is useful for tracking.
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Figure 35.2. Monopulse Response

36. Sum-Difference Method

This is used to implement the monopulse idea with a sensor array. The array is
divided into two parts: + and - parts. Let the array output be:

(36.1) y(t) =


y1(t)
y2(t)

...
yM (t)


Sum response is obtained as follows

(36.2) uΣ = wHΣ y(t)

where

(36.3) wΣ ,


1
1
...
1


Similarly difference response is obtained as follows

(36.4) u∆ = wH∆y(t)

where

(36.5) w∆ ,


1
1
...
−1
−1


where in (36.5), half is 1 and half is -1.
The sum and difference beam patterns are



34 ALPER YAZAR

(36.6) Σ(φ) = wHΣ a(φ)

(36.7) ∆(φ) = wH∆a(φ)

Figure 36.1. Sum-Difference Method

For ULA,

(36.8) Σ(φ) =

M∑
k=1

ej(k−1)β =

sin

(
M
β

2

)
sin

(
β

2

) ej(M−1)β/2

where

(36.9) β ,
2π

λ
dcosφ

Also,

(36.10) ∆(φ) =

M/2∑
k=1

jej(k−1)β +

M∑
k=M/2+1

−jej(k−1)β =

2sin2

(
M
β

4

)
sin

(
β

2

) ej(M−1)β/2

Then,

(36.11) f(φ) ,
∆(φ)

Σ(φ)

(36.12) f(φ) = tan

(
Mβ

4

)
= tan

(
πMdcosφ

2λ

)
In practice,

(36.13) φ ' f−1

[
Re

{
u∆

uΣ

}]
It is an amplitude technique. It is used in radar. However, since it is not using

the full information, it is not used in direction finding.
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37. Wattson-Watt Method

Frequently used. It is small and accuracy is acceptable. This is also amplitude
comparison technique. It has 180◦ ambiguity. It is solved by a sense antenna or by
combining all antenna outputs ti get reference signal.

Figure 37.1. Crossed Loop Antenna

37.1. Crossed Loop Antenna. Advantages of decrease in size. But it is sensitive
to sky waves (reflections from sky etc..).

Figure 37.2. Adcock Antenna

37.2. Adcock Antenna. Then,

(37.1) SREF (t) , SN (t) + SS(t) + SE(t) + SW (t)

(37.2) SNS(t) , SN (t)− SS(t)

(37.3) SEW (t) , SE(t)− SW (t)

Then,
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(37.4) SNS(t) = s(t)sin(θ)

ej 2π

d
cosφsinθ

− e
−j

2π

d
cosφsinθ



(37.5) SEW (t) = s(t)sin(θ)

ej 2π

d
sinφsinθ

− e
−j

2π

d
sinφsinθ



Figure 37.3. Sensor Placement

(37.6) φ ' tan−1SEW (t)

SNS(t)
= tan−1

sin
(

2π

λ
dsinφsinθ

)
sin

(
2π

λ
dcosφsinθ

)


For (37.6), d/λ should be small.

Figure 37.4. Bias Error

11:40
Advantages:
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Figure 37.5. Figure of Eight

• Instantaneous bearing report
• Relatively small size for the operating frequency
• Acceptable bearing accuracy (5◦)

Disadvantages:

• Better accuracy is possible
• No immunity to multipath signals, co-channel interference. (Indeed there

is no algorithm immune to multipath except maximum likelihood which is
a super-resolution method(???))

Crossed loop has problems especially for signals coming from elevated heights
such as sky waves. This generates bearing errors. Adcock antennas are proposed
to solve this problem.
D/λ < 0.2 is desired in order to have a figure of eight characteristics close to

circle. (Really ???) But increase in separation is good thing to increase aperture.

38. Pseudo-Doppler Method

It is possible to mechanically rotate an antenna on a circle to find the DOA angle
from Doppler effect. However, electronic switching is preferred in order to avoid
mechanical operation.

Advantages:

• Simple operating principle
• Single channel, cheap, system

Disadvantages:

• Antenna sampling introduces signal distortions and DF error.
• DF accuracy decreases as elevation angle decreases.
• Accuracy is low, possibly worse than Wattson-Watt.
• Dwell time on signal is low due to switching.
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Figure 38.1. Pseudo-Doppler Method

(38.1) s(t) = acos

(
ω0t+

2πR

λ
cos(ωrt− φ) + ϕ

)
where ω0 is operating frequency, ωr is rotation frequency, and ϕ is constant phase

offset.
Define

(38.2) β , ω0t+
2πR

λ
cos(ωrt− φ) + ϕ

(38.3) ω(t) =
dβ

dt
= ω0 −

2πR

λ
sin(ωrt− φ)

where ω(t) is instantaneous frequency.
If a high-pass filter is used, then

(38.4) sD(t) = −2πR

λ
sin(ωrt− φ)

Then modulate the signal

(38.5) sE(t) = sD(t)sin(ωrt) = −πR
λ
ωr [cos(φ)− cos(2ωrt− φ)]

Apply low-pass filter

(38.6) sF (t) = −πR
λ
ωrcos(φ)

Then,

(38.7) φ = cos−1

[
λ

πRωr
sF (t)

]
Generally rotation frequency is around kHz.
This method is used especially in air planes. Accuracy is around 3 to 10◦ is

sufficient for search and rescue operations for example.
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Generally, accuracy: Interferometer > Wattson-Watt > Pseudo-Doppler
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Part 5. 18/03/14 Lecture Note

39. Interferometer

This method uses the phase information. There are both phase dependent and
phase and amplitude dependent implementation of interferometer technique.

39.1. Correlative Interferometer. This method is both amplitude and phase
based technique. In that technique, you have sensors and transmitter turning
around. You simply record signals for each angle. You calibrate sensor. At runtime,
you correlate with table and find angle. Simple, effective and commercially used.

39.2. Phase-Based Interferometer.

Figure 39.1. Far Field Source, 2-Channel Array

39.2.1. 2-Channel Case.

(39.1) τ =
dcosφ

c

Note that in Figure 39.1, source is far field.

(39.2) y1(t) = s(t)ejωct

is assumed to be received by the reference sensor. Then,

(39.3) y2(t) = y1(t− τ) = s(t− τ)ejωc(t−τ)

Using narrowband assumption:

(39.4) y2(t) = s(t)ejωc(t−τ) = y1(t)e−jωcτ

Notice that we apply narrowband assumption immediately, not after demodula-
tion.

Let,

(39.5) φ1(t) , ∠y1(t)

(39.6) φ2(t) , ∠y2(t) = φ1(t)− ωcdcosφ

c
= φ1(t)− 2π

λ
dcosφ
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Then,

(39.7) φ1(t)− φ2(t) =
2π

λ
dcosφ

Finally

(39.8) φ = cos−1

[
(φ1(t)− φ2(t))

λ

2πd

]
Angle is found by cross-correlating two signals. Angle is found with respect to

baseline. There is also a ambiguity for minus angles. Also elevation angle could
not be identified.

39.2.2. 3-Channel Case. It can also find elevation angle.

Figure 39.2. 3-Channel Array

Most robust design when geometry is equilateral triangle.
Take the first sensor as the reference

(39.9) y2(t) = s(t)ej2π/λ [−dsin(π/6)cosφsinθ + dcos(π/6)sinφsinθ]

(39.10) y3(t) = s(t)ej2π/λ [dsin(π/6)cosφsinθ + dcos(π/6)sinφsinθ]

Let

(39.11) φ1(t) , ∠y1(t) = 0

(39.12) φ2(t) , ∠y2(t) =
2π

λ
[−dsin(π/6)cosφsinθ + dcos(π/6)sinφsinθ]

(39.13) φ3(t) , ∠y3(t) =
2π

λ
[dsin(π/6)cosφsinθ + dcos(π/6)sinφsinθ]
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(39.14) ψ ,
(φ2 − φ1) + (φ3 − φ1)

(φ3 − φ1)− (φ2 − φ1)

(39.15) ψ =
cos(π/6)sinφ

sin(π/6)cosφ

As a note,

(39.16) R̂y =
1

N

N∑
t=1

y(t)y(t)H =

r11 r12 r13

r21 r22 r23

r31 r32 r33


then, φ2 = r12 and φ3 = r13.
Azimuth angle could be found as

(39.17) φ = tan−1[tan(π/6)ψ]

Notice that it is exact contrast to Wattson-Watt. The only assumption is nar-
rowband.

(39.18)

β , [((φ2 − φ1) + (φ3 − φ1)) sin(π/6)]
2

+ [((φ3 − φ1)− (φ2 − φ1)) cos(π/6)]
2

(39.19) β =

[
4π

λ
dsin(φ)

1

2
sin(π/3)

]
Elevation angle is

(39.20) θ =

√
β

2π

λ
dsin(π/3)

Those are non-linear expressions and generally linear expressions are more robust
to errors.

Advantages:

• Azimuth and elevation angles are found
• No approximation is involved as in Wattson-Watt
• Good DOA accuracy

Disadvantages:

• Same as other algorithms including super-resolution
• Works for only one source

All classical methods work for one source case. Interferometer, Wattson-Watt
and Pseudo-Doppler fails in other cases (multipath). But super-resolution works.
But commercial systems use classical approaches generally.
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Figure 39.3. Multipath Case

Figure 39.4. Different Sources with Different Spectrum or Time,
No Problem

Figure 39.5. Multipath Problem, R is Rank Deficient

40. Optimum and Close to Optimum DOA Estimation

Maximum likelihood is optimum algorithm. MUSIC is also reaches CRB in ideal
conditions. Ideal means for example there is no multi-path.
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When there is only one source signal there is not much difference between super-
resolution and classical techniques. Especially, interferometer is as good as super-
resolution techniques at suitable conditions.

When there are more than one source signals, the subspace (super-resolution)
methods perform significantly better. Classical methods may fail completely. They
can identify and perform beyond Rayleigh limit. Therefore, they are called super-
resolution methods.

There are several methods for DOA estimation based on subspace techniques
(noise and signal subspace as mentioned which are orthogonal).

• MUSIC (Very Good, Not Only for DOA)
• ESPRIT (Very Good, Not Only for DOA)
• Min-Norm (Load Efficient, Inferior)
• Maximum Likelihood (The Best, Heavy Load and Convergence Problem)

10:40

41. MUSIC (Multiple Signal Classification)

One of the most powerful methods in DOA estimation. There are two versions
of algorithm.

• Spectral MUSIC: can be applied to any sensor geometry, computationally
intense.
• Root MUSIC: valid for only linear array, fast algorithm.

(41.1) y(t) = As(t) + e(t)

(41.2) Ry = E{y(t)y(t)H} = ARsA
H +Re = ARsA

H + σ2I

(41.3) R̂y =
1

N

N∑
t=1

y(t)y(t)H

(41.3) is called sample covariance matrix. It is best estimator under AWGN.
After SVD

(41.4) Ry = V ΛV H

where

(41.5) Λ =



λ1 + σ2

. . .

λn + σ2

σ2

. . .

σ2


and
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(41.6) V =
[
v1 v2 . . . vn vn+1 . . . vM

]
n is the number of sources.

(41.7) rank(ARsA
H) = n if M > n noise free case (???)

(41.8) SM×N ,
[
v1 v2 . . . vn

]
where S in (41.8) contains eigenvectors of signal subspace vectors. Similarly,

(41.9) GM×(M−N) ,
[
vn+1 vn+2 . . . vM

]
where G in (41.9) contains eigenvectors of noise subspace vectors.
Note that vectors in (41.8) and (41.9) are orthogonal to each other.

(41.10) RyG = ARsA
HG+ σ2G = σ2G

Note that ARs is a full-column rank matrix. A represents the signal subspace.
True DOA angles {φk}nk=1 are the only solutions of the equation.

(41.11) aH(φk)GGHa(φk) = 0 for any M > n

Note that GGH is orthogonal projector on R(G) which is noise space.

(41.12) p(φ) ,
1

aH(φ)GGHa(φ)

(41.12) is called as MUSIC pseudo spectrum.

Figure 41.1. MUSIC Pseudo Spectrum
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42. MUSIC Algorithm

Compute the sample covariance matrix

(42.1) R̂y =
1

N

N∑
t=1

y(t)y(t)H

Find

(42.2) Ĝ =
[
vn+1 vn+2 . . . vM

]
42.1. Spectral MUSIC. Find the DOA angle estimates as the locations of the
n-highest peaks of the function

(42.3) p(φ) =
1

aH(φ)ĜĜHa(φ)

where φ ∈ [−π, π]
This algorithm requires search.

42.2. Root MUSIC. Let

(42.4) a(z) =
[
1 z−1 . . . z−(M−1)

]
for ULA.
Consider the equation aT (z−1)ĜĜHa(z) = 0 polynomial roots. Angular posi-

tions if the n-roots (inside the unit circle) which are closest to the unit circle are
the DOA angles. It is a fast algorithm. However, it can be applied to only linear
array.

Figure 42.1. z-Plane

For MUSIC algorithm, n < M should be satisfied and sensor position should be
known. Performance of MUSIC is good. It is a sub-optimum subspace algorithm.
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43. MUSIC Algorithm Application

Let φ = 60◦, M = 2 and d = λ/2.

(43.1) a(φ) =

[
1

ej2π/λdcosφ

]
=

[
1

ejπ/2

]
=

[
1
j

]

(43.2) y(t) = a(φ)s(t) + e(t)

(43.3) Ry = aaHσ2
s + σ2

eI =

[
1 −j
j 1

]
σ2
s + σ2

eI

Let σ2
s = 1 and σ2

e = 0.

(43.4) Ry =

[
1 −j
j 1

]
=

[
−
√

2/2 j
√

2/2

−j
√

2/2
√

2/2

] [
2 0
0 0

] [
−
√

2/2 j
√

2/2

−j
√

2/2
√

2/2

]H
There is one source, then

(43.5) S =

[
−
√

2/2

−j
√

2/2

]

(43.6) G =

[
j
√

2/2√
2/2

]
11:40

(43.7) p(φ) =
1

aH(φ)GGHaH(φ)

(43.8) GGH =

[
0.5 0.5j
−0.5j 0.5

]

(43.9) a(φ) =

[
1

ej2π/λdcosφ

]
=

[
1

ejπcosφ

]

(43.10) Q , aH(φ)GGHaH(φ) = 1− sin(πcosφ)

Qmin = 0 (noise-free case), then φ = ±60◦.

44. Min-Norm Algorithm

Inferior algorithm comparing to MUSIC, seldom used. MUSIC uses (M-n) lin-
early independent vectors in G. Min=Norm uses a single vector which is a good
candidate to represent those vectors in G. By doing so some computational savings
is achieved with a certain loss in accuracy.

Let [1ĝ]T be the vector R(G) (range space) with first element equal to 1 that
has minimum Euclidean norm.
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44.1. Spectral Min-Norm. The locations of the n highest peaks in the pseudo-
spectrum given in (44.1) corresponds to the DOA angle.

(44.1)
1∣∣∣∣aH(φ)

[
1
ĝ

]∣∣∣∣2
44.2. Root Min-Norm. The angular positions of the n roots of the polynomial
given in (44.2) that are closest to the unit circle are DOA angles.

(44.2) aT (z−1)

[
1
ĝ

]
OK But how can I find ĝ?

(44.3) ŝM×n =

[
αH

s̄

]
In (44.3), ŝ is signal space eigenvectors. αH is 1xn row vector and s̄ is (M-1)xn

matrix.
Then,

(44.4) ŝH
[
1
ĝ

]
= 0

Then,

(44.5) s̄H ĝ = −α

(44.6) ĝ = −s̄
(
s̄H s̄

)−1
α

(44.6) is LS solution.

(44.7) ŝH ŝ = I = ααH + s̄H s̄

Then,

(44.8) s̄H s̄ = I − ααH

Using (44.8) in (44.6)

(44.9) ĝ = − s̄α

I − ααH

Performance loss is significant.
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45. Forward-Backward Spatial Smoothing (FBSS)

For one way spatial smoothing M > 2n is required (???). For two way spatial
smoothing M > 1.5n is required. Two-way reduces the array size.

Multipath os an important error source for DOA estimation. FBSS can be used
to solve this problem. FBSS can only be used in linear arrays due to Vandermonde
matrix structure.

Figure 45.1. Multipath Problem

Figure 45.2. Overlapping Sub-Arrays

Obtain

(45.1) R̂y =
1

N

N∑
t=1

y(t)y(t)H

Define

(45.2) J ,


0 . . . 0 1
0 . . . 1 0
...

...
...

...
1 0 . . . 0


(45.2) is off-diagonal matrix.
Obtain

(45.3) R̃M×M =
1

2

(
R̂y + JR̂Hy J

)
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(45.4) Rfb =
1

K

K∑
k=1

zTk R̃zk

where

(45.5) zkM×L ,
[
0̄ IL×L 0̄

]
where identity matrix starts from kth column in (45.5).

Last step is simply summing ‘diagonal matrices‘ of R̃. For example, let

(45.6) R̃ =


a b c d
e f g h
i j k l
m n o p


Then for example,

(45.7) Rfb =

[
a b
e f

]
+

[
f g
j k

]
+

[
k l
o p

]
M is number of sensors, L is subarray size and P is the number of subarrays.

L > n and M ≥
⌈

3

2
n

⌉
should be satisfied. (round or ceil ???) de is ceiling

operator.
For example

n M L P
2 3 3 1
3 5 4 2
4 6 5 2

If n increases but P stays there, you may have problems.

46. What does coherent source mean?

Suppose we have s1(t) = s(t) and we have also s2(t) = αejβs(t) in narrow-band
case. Then,

(46.1) s =

[
s1(t)
s2(t)

]
And

(46.2) Rs =

[
r11 αe−jβr11

αejβr11 |α|2r11

]
Matrix in 46.2 is rank deficient. Rank of this matrix is 1 whereas it should be 2.

Coherent sources mean fully correlated sources. In that case you can’t separate.
For wide-band case s1(t) = s(t) and we have also s2(t) = αs(t− τ)
Notice,
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(46.3) Rs =

[
1 β
β 1

]
|β| < 1 should be in (46.3). If it is 0, you have uncorrelated sources and perfect.

But if its absolute value is close to 1, you have problems. For fully-correlated case
it is 1.

In smoothing, price is that: You start with RM×M but ends with RfbL×L. L < M
is always true. Win rank but loose aperture.

Figure 46.1. Multipath Causes Fully Correlated Source Signals
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Part 6. 25/03/14 Lecture Note

47. ESPRIT method

It uses signal space (a subspace algorithm). It can be applied on the only certain
geometries. When I move subarray by ∆ distance I need to get the second subarray.
Therefore, there is a baseline and it should repeat itself for every doublet as shown
in 47.1.

It is a powerful method for parameter estimation.

Figure 47.1. ESPRIT Method Array Partitioning

Figure 47.2. Subarrays for ULA

M is the number of sensors. M2 = M1 = M/2 is the number of sensors in the
subarrays. M/2 ≥ n or M ≥ 2n where n is number of sources.

Unambiguous DOA estimation is possible if ∆ < λ/2.

(47.1) y(t) = As(t) + e(t)
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Let

(47.2) A =

[
A1

A2

]
where A1 stands for subarray 1 and A2 stands for subarray 2. Due to required

geometry

(47.3) A2 = A1D

where

(47.4) D , diag{e−jω0∆cos(φ1)/c, e−jω0∆cos(φ2)/c, . . . , e−jω0∆cos(φn)/c}
D has n eigenvalues λ̄1, λ̄2, . . . .λ̄n. And

(47.5) arg{λ̄j} = −ω0∆cos(φj)

c

φj can be found from λ̄j .
Let the signal subspace eigenvectors organized as follows

(47.6) S =

[
S1

S2

]
where S1 stands for subarray 1 and S2 stands for subarray 2.
Assume

(47.7) R = ARsA
H + σ2I

Then,

(47.8) RS = S


λ1

λ2

. . .

λn

 = ARsA
HS + σ2S

Then,

(47.9) S = ARsA
HSΛ̄−1

where

(47.10) Λ̄ ,


λ1 − σ2

λ2 − σ2

. . .

λn − σ2


Define

(47.11) c , RsA
HSΛ̄−1
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Then,

(47.12)

[
S1

S2

]
=

[
A1

A2

]
c

(47.13) S2 = A2C = A1DC = S1C
−1DC = S1Φ

where

(47.14) Φ , 1C−1DC

In (47.13), C is full-rank square matrix then its inverse is exist. D is a diagonal
matrix. C−1DC is a similarity transformation over D.

Note that eigenvalues of Φ are same as eigenvalues of D.
A1, A2, S1 and S2 are full-column rank.
From (47.13)

(47.15) Φ = (SH1 S1)−1SH1 S2

Φ is related with D over a similarity transformation and Φ and D have same
eigenvalues.

ESPRIT estimates for {Φk}Nk=1 are obtained from −arg{λ̄k} where λ̄k} are the
eigenvalues of

(47.16) Φn×n = (SH1 S1)−1SH1 S2

Advantages:

• No need to know steering matrix or sensor positions except a doublet
• Sensors in the array do not need to be match except the ones in the doublets
• DOA angle is estimated without search. It is a fast algorithm.
• The solution returns only number of sources not more or less. We assume

that we know number of sources.

Disadvantages:

• ESPRIT computes DOA angles using a base line. Hence, it has 180◦ am-
biguity.
• ∆ < λ/2 to avoid spatial aliasing.
• When the array is placed in a platform, doublets may not be affected sim-

ilarly.
• ESPRIT uses the information in sub-arrays. Therefore it is not as effective

as MUSIC.

48. Maximum Likelihood Methods

Previous methods are not optimum. ML methods are optimum but not compu-
tationally efficient, they are usually search based.

Coherent Signals: Two signals are coherent if one is scaled and delayed version
of the other. Sub-space methods can not resolve coherent signals except FBSS with
ULA. But ML algorithms solves.

Consistency: An estimate is consistent if it converges to the true value when the
number of data tends to infinity.
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Figure 47.3. ESPRIT vs MUSIC in General

Statistical Efficiency: An estimator is statistically efficient if it asymptotically
attains the CRB which is a lower bound on the covariance matrix of any unbiased
estimator. The difference between consistency is that even if data is not infinity
statistical efficient algorithm tends to close CRB. For example, MUSIC is statistical
efficient is under ideal conditions (AWGN, n < M , well-known sensor positions
etc...).

Subspace methods (MUSIC, ESPRIT) are sub-optimum. ML algorithms are
optimum. They can solve coherent signals.

Disadvantages of ML algorithms are computational expense and local minima
problem. Two ML algorithms exist: Deterministic and Stochastic ML algorithm.

10:40

49. Deterministic ML Method (DML)

Noise is modelled as stationary AWGN random process. It is also spatially
white and circularly symmetric. The signals are deterministic(discard statistical
information even if exists) and unknown.

(49.1) y(t) = As(t) + e(t)

Complex random process is circularly symmetric:

(49.2) E{x[n1]x[n0]} = 0

This implies that

(49.3) Rxr [n1, n0] = Rxi [n1, n0]

Basically

(49.4) x[n] = xr[n] + jxi[n]

Then

(49.5) Rxixr [n1, n0] = −Rxrxi [n1, n0]



56 ALPER YAZAR

What is the significance of circular symmetricity? In order to define covariance
matrices for complex case it is required.(???)

Then,

(49.6) E{e(t1)e(t2)H} = σ2Iδt1,t2

(49.7) E{e(t1)e(t2)T } = 0

Observation vector y(t) is also circularly symmetric and temporally white Gauss-
ian random process with mean As(t).

Let’s write PDF of y.

(49.8) fy(y) =
1

(πσ2)M
e
−
||y(t)−As(t)||2

σ2

Then, likelihood function

(49.9) LDML(φ, s(t), σ2) =

N∏
t=1

(πσ2)−Me
−
||y(t)−As(t)||2

σ2

N is the number of observations.
Write negative log-likelihood function ignoring constants normalized by 1/N .

(49.10) lDML = Mlogσ2 +
1

σ2N

N∑
t=1

||y(t)−As(t)||2

Note that non-linear least-squares and DML are the same for Gaussian noise.

(49.11) f =
1

N

N∑
t=1

||y(t)−As(t)||2

(49.11) is non-linear least-squares.

(49.12) ŝ(t) = (AHA)−1AHy(t) = A+y(t)

(49.12) is LS solution.
Put (49.12) in (49.10) ignoring some terms.

(49.13) ŝ(t) =
1

σ2N

N∑
t=1

||y(t)−A(AHA)−1AHy(t)||2

(49.14) ŝ(t) =
1

σ2N

N∑
t=1

||[I −A(AHA)−1AH ]y(t)||2

Let’s define

(49.15) ΠA , A(AHA)−1AH
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is a projection onto signal space.

(49.16) Π⊥A , I −ΠA

Then open norm expression

(49.17) ŝ(t) =
1

σ2N

N∑
t=1

y(t)HΠT
AΠT

Ay(t)

Notice that from properties of projection matrices ΠT
AΠT

A = ΠT
A.

(49.18) ŝ(t) =
1

σ2N

N∑
t=1

tr{y(t)HΠT
Ay(t)}

Notice that in (49.18) y(t)HΠT
Ay(t) is a scalar value and trace of a scalar value

is itself.
Remember

(49.19) tr(AB) = tr(BA)

in general. Then,

(49.20) ŝ(t) =
1

σ2N

N∑
t=1

tr{ΠT
Ay(t)y(t)H}

Also remember,

(49.21) tr(A) + tr(B) = tr(A+B)

Then,

(49.22) ŝ(t) =
1

σ2
tr{ΠT

A

1

N

N∑
t=1

y(t)y(t)H}

Notice that

(49.23) Ry =
1

N

N∑
t=1

y(t)y(t)H

Then

(49.24) ŝ(t) =
1

σ2
tr{ΠT

ARy}

(49.25)
∂lDML

∂σ2
=
M

σ2
− 1

σ4
tr{ΠT

ARy} = 0

Then,
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(49.26) σ2 =
1

M
tr{ΠT

ARy}

Finally

(49.27) φ̂DML = argmin tr{ΠT
ARy}

Measurement y(t) are projected onto a model subspace orthogonal to all antici-
pates signal components and a power measurement like

(49.28)
1

N

N∑
t=1

||Π⊥Ay(t)||2 = tr{Π⊥AR}

is evaluated. The power should be smallest when the projector removes all the
signal components.

In implementation, you select φ and generate Π⊥A and search. For n source
n-dimensional search is required. φ steps vary.

50. Stochastic ML Method (SML)

The signal waveforms are modelled as Gaussian random process.

(50.1) E{s(t1)s(t2)H} = Rsδt1,t2

(50.2) E{s(t1)s(t2)T } = 0

(50.3) Ry = ARsA
H + σ2I

unknowns are φ,Rs,σ
2.

Negative log-likelihood is proportional to (ignoring constants)

(50.4) l =
1

N

N∑
t=1

||ΠT
Ay(t)||2 = tr{ΠT

ARy}

For fixed φ minimum with respect to σ2 and Rs as follows:

(50.5) σ̂2
SML(φ) =

1

M − n
tr{ΠT

ARy}

(50.6) R̂s(φ) = A+(Ry − σ2
SMLI)(A+)H

(50.7) φ̂SML = argmin log|AR̂sAH + σ2
SMLI|

In (50.7), || is determinant. It is a generalized variance measures the volume of
confidence interval for data.

Both algorithm are nearly same for uncorrelated signal and noise case. But
difference is observed under correlated case, low SNR, etc. Deterministic ML is
easier to compute.
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11:40

51. Beamspace Processing and Beamforming

Figure 51.1. Beamforming and Beamspacing

Array perform spatial sampling of the wavefront similar ti temporal sampling.
a(φ) characterizes the array as a spatial sampling device. If it is known, array is
said to be calibrated.

Figure 51.2. Narrowband Beamforming

Spatial filter (coefficient vector) h can be selected to enhance SOI (signal of
interest) and suppress interference. SOI and interference may cover the same time-
frequency domain. They can be separated in spatial domain.

For h we desired to have

• It passes the SOI undistorted
• It attenuates all the other signal, coming from different directions.

The power of at the beamformer output is found as:

(51.1) Output Power at Beamformer = E{yf (t)2} = E{hHRyh}
where
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(51.2) Ry , E{y(t)y(t)H}
hHRyh should peak at the DOA of the source signal. This can be used for DOA

estimation.
For a single source n = 1 DOA estimation by beamforming is consistent. For

n > 1 it is inconsistent and bias can be large if sources are correlated or closely
spaced.

Beamformers can be classified in different ways:

• Narrowband Beamformer
• Wideband Beamformer (Underwater Acoustics)

Also in other way

• Data Independent Beamformer
• Statistically Optimum Beamformer
• Adaptive Beamformer
• Partially Adaptive Beamformer

Also

• Transmit Beamforming
• Receive Beamforming (Our focus, closed for expressions available)

Figure 51.3. General Beamforming Situation

52. Data Independent Beamformer

The weight vector, h, is designed such that the beamformer response approxi-
mates a desired response independent of the array data or statistics.

Desired:

(52.1) hHa(φ) = 1

where φ is SOI angle.

(52.2) aH(φ)a(φ) = P

by normalization.
Let
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(52.3) Ry = I

then

(52.4) Output Power at Beamformer = E{|yf (t)|2} = E{hHh}
The objective is minimize hHh over h, subject to hHa(φ) = 1.
Note that,

(52.5) h =
a(φ)

a(φ)Ha(φ)
=
a(φ)

M

where M = P . Power in this case

(52.6) E{|yf (t)|2} =
a(φ)HRya(φ)

M2

For one signal it is the optimum beamformer.
You can have this from Lagrangian.

(52.7) L = hHh+ λ(1− hHa(φ)) + λ∗(1− hTa∗(φ))

(52.8)
∂L
∂h

= h− λa(φ) = 0

(52.9) h = λa(φ)

(52.10) hHa(φ) = 1

(52.11) λaH(φ)a(φ) = 1

(52.12) λ =
1

aH(φ)a(φ)
=
a(φ)

M

In receive case this type of problems may be solved by Lagrangian.
Note that, suppose there is only one signal.

(52.13) yf (t) = hHy(t) = hHa(φ)s(t) + hHp(t)

Note that hHa(φ) = 1

53. Statistically Optimum Beamformer

We will talk about: MVDR (Minimum Variance Distortionless Beamformer)
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Part 7. 01/04/14 Lecture Note

Spatial filter (or beamformer weight vector) is designed based on the statistics of
the data received by the array. The goal is the optimize the beamformer response so
that the output containing minimum contribution due to noise and signals arriving
from directions other that the SOI. But computational cost is a question. We will
concentrate on narrow-band case.

Figure 53.1. An Example Situation

Idea is maximization SINR (Signal To Interference + Noise Ratio). MVDR: Not
distort SOI is the optimum beamformer. It requires the signal (Rs) and noise +
interference (Re) covariances. Our signal model is:

(53.1) y(t) = a0s0(t) + a1s1(t) + a2s2(t) + v(t)

(53.2) i(t) , a1s1(t) + a2s2(t)

(53.3) e(t) , a1s1(t) + a2s2(t) + v(t)

where s0(t) is desired signal, i(t) is interference, e(t) is interference + noise and
v(t) is white Gaussian noise.

(53.4) Re = E{(i(t) + e(t))(i(t) + e(t))H}

(53.5) ss(t) , a0(φ)s(t)

(53.6) Rs = E{ss(t)ss(t)H}

Note that
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(53.7) 1 ≥ Rank(Rs) ≥M
Rank(Rs) ≥ 1 for incoherently scattered sources or signals with randomly scat-

tering waveforms such as in radar, sonar and wireless communication. As an ex-
ample in practice

(53.8) Rs =

∫ π

−π
P (φ)a(φ)a(φ)Hdφ

This course we usually assume that signals are point sources. Our problem is

(53.9)
hHRsh

hHReh
= SINR

by playing h where hHRsh
H is SOI power and hHReh

H is signal + interference
power. We will have two cases:

• Rank > 1
Minimize hHReh over h such that hHRsh = 1.

• Rank = 1
Minimize hHReh over h such that hHa(φ) = 1.
Because Rs = σ2

sa(φ)a(φ)H

53.1. Rank > 1.

(53.10) L = hHReh+ λ(1− hHRsh)

(53.11)
∂L
∂hH

= Reh− λRsh = 0

Then,

(53.12) Reh = λRsh

(53.13) R−1
e Rsh =

1

λ
h

(53.13) is a generalized eigenvalue problem.
Then hopt becomes eigenvector corresponding to largest eigenvalue of R−1

e Rs.

53.2. Rank = 1. If Rs = σ2
sa(φ)a(φ)H then,

(53.14) SINR =
σ2
sh

Ha(φ)a(φ)Hh

hHReh
=
σ2
s |hHa(φ)|2

hHReh

Then minimize hHReh such that hHa(φ) = 1 (distortionless response)

(53.15) L = hHReh+ λ(1− hHa(φ)) + λ∗(1− hTa∗(φ))

(53.16)
∂L
∂hH

= Reh− λa(φ) = 0
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(53.17) Reh = λa(φ)

(53.18) h = λR−1
e a(φ)

Putting constraint

(53.19) hHa(φ) = 1

(53.20) λaH(φ)R−1
e a(φ) = 1

(53.21) λ =
1

aH(φ)R−1
e a(φ)

(53.22) hopt =
R−1
e a(φ)

aH(φ)R−1
e a(φ)

You need to know Re also φ.

54. CAPON Beamformer

CAPON beamformer and MVDR turn out to be same for Rank = 1 case
(Rs = σ2

sa(φ)aH(φ)) and noise and signal is uncorrelated. In general they per-
form differently.

Consider the typical array model:

(54.1) y(t) = A(φ)s(t) + e(t)

CAPON tries to minimize hHRyh (array output power) over h such that hHa(φ) =
1. Suppress power everywhere except SOI.

(54.2) L = hHRyh+ λ(1− hHa(φ)) + λ∗(1− hTa∗(φ))

(54.3)
∂L
∂hH

= Ryh− λa(φ) = 0

(54.4) Ryh = λa(φ)

(54.5) h = λR−1
y a(φ)

Considering constraint

(54.6) hHa(φ) = 1

(54.7) λaH(φ)R−1
y a(φ) = 1
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(54.8) λ =
1

aH(φ)R−1
y a(φ)

(54.9) hCAPON =
R−1
y a(φ)

aH(φ)R−1
y a(φ)

whereRy is true (not estimate) of covariance matrix if the array output. Different
from MVDR Re is switched by Ry

10:40

55. Proof of the Equivalence Between CAPON and MVDR
Beamformer

Assumptions:

(55.1) Rs = σ2
sa(φ)a(φ)H

(55.2) Ry = σ2
sa(φ)a(φ)H +Re

In (55.1), Rank = 1 is assumed at (55.2) uncorrelated source and interference +
noise is assumed.

Matrix inversion lemma:

(55.3) [A− CB−1D]−1 = A−1 +A−1C[B −DA−1C]−1DA−1

Set A = Re, B = 1, C = a(φ) and D = −aH(φ).

(55.4) R−1
y = R−1

e −R−1
e a[1 + aHR−1

e a]−1aHR−1
e

(55.5) R−1
y = R−1

e −
R−1
e aaHR−1

e

1 + aHR−1
e a

(55.6) h =
R−1
y a

aHR−1
y a

(55.7) h =
R−1
e a(1− α)

aHR−1
e a(1− α)

=
R−1
e a

aHR−1
e a

where

(55.8) α ,
aHR−1

e a

1 + aHR−1
e a

Then MVDR and CAPON are same under assumptions. Notice that we are
talking about Ry which is not estimate, known perfectly.

Beamformer output:

(55.9) yf (t) = hHy(t)
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Array output power:

(55.10) E{|yf (t)|2} = E{hHy(t)yH(t)h} = hHRh

(55.11) hHRh =
aHR−1

y RyR
−1
y a

(aHR−1
y a)2

=
1

aHR−1
y a

Then output spectrum of CAPON is:

(55.12) fCB =
1

aH(φ)R−1
y a(φ)

56. Linearly Constrained Minimum Variance Beamformer (LCMVB)

CAPON beamformer can also be seen as linearly constrained minimum variance
beamformer. In case of multiple constraints minimize hHRyh over h such that

(56.1) hH
[
a(φ1) a(φ2)

]
=
[
1 g

]
In other words,

(56.2) hHcM×K = fH

where f is a vector.

(56.3) L = hHRyh+ (hHc− fH)λK×1 + (hT c∗ − fT )λ∗

(56.4)
∂L
∂hH

= Ryλ+ cλ = 0

(56.5) h = −R−1
y cλ

Using the constraint

(56.6) − λHcHR−1
y c = fH

(56.7) λH = −fH(cHR−1
y c)−1

(56.8) λH = −(cHR−1
y c)−1f

(56.9) h = R−1
y c(cHR−1

y c)−1f

Original CAPON expression is similar to 56.9.
Given

(56.10) h =
R−1
e a(φ)

aH(φ)R−1
e a(φ)
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Notice that (56.10) is MVDR expression. The beamformer output becomes

(56.11) yf (t) = hHy(t) =
R−1
e a

aHR−1
e a

[as0(t) + e(t)]

(56.12) yf (t) = s0(t) +
R−1
e a

aHR−1
e a

e(t)

Then,

(56.13) Signal Power ∼ σ2
s0

(56.14) Noise and Interference Power ∼ aHR−1
e ReR

−1
e a

(aHR−1
e a)2

=
1

aHR−1
e a

Then,

(56.15) SINR =
σ2
s0

1

aHR−1
e a

= σ2
s0a

HR−1
e a

In practice Re, Ry and Re are usually not available. Sample covariance matrix
must be used.

(56.16) R̂y =
1

N

N∑
t=1

y(t)y(t)H

(56.16) is best under AWGN case.
The beamformers which use sample covariance are called as Sample Matrix In-

verse (SMI) beamformers.

(56.17) hSMI = Eigenvectors of {R̂−1
y Rs} for Rank > 1

(56.18) hSMI =
R̂−1
y a(φ)

aH(φ)R̂−1
y a(φ)

for Rank = 1

This is SMI using CAPON expression, not CAPON. Substantial performance
loss is observed.

57. Loaded SMI Beamformer

One of the most popular approach to robust adaptive (sample or block adaptive)
beamforming in the presence of array response error and small training sample size
is the diagonal loading technique. The idea is to regularize the problem by adding
a quadratic penalty term to the objective function.

Minimize hHR̂h+γhHh over h such that hHRsh = 1 where γ is penalty weight.
Solution is called as LSMI beamformer.

(57.1) L = hHR̂h+ γhHh+ λ(1− hHRsh)
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(57.2)
∂L
∂hH

= R̂h+ γh− λRsh = 0

(57.3) (R̂+ γI)h = λRsh

(57.4) (R̂+ γI)−1Rsh =
1

λ
h

where h is the eigenvector corresponding to the largest eigenvalue of (R̂ +

γI)−1Rs. Similar to MVDR but we have R̂ instead of Re.
For Rank = 1 case, Rs = σ2

saa
H .

(57.5) h =
(R̂+ γI)−1a(φ)

aH(φ)(R̂+ γI)−1a(φ)

(57.5) very similar to MVDR where Re is switched by R̂ + γI. Performance is
good.

What is γ?
Usually around 0.1. You can find it in optimum manner.

58. An Equivalent Formulation for CAPON Beamformer

It is called as Constrained Covariance Fitting.
Our goal is to maximize signal power while fitting σ2

sa(φ)a(φ)H to R impos-
ing R − σ2

sa(φ)a(φ)H ≥ 0 which is called as positive semi-definite matrix where
eigenvalues are not negative and eigenvectors are orthogonal.

New formulation is maximize σ2
s such that R − σ2

sa(φ)a(φ)H ≥ 0. It is same
as CAPON beamformer expression which is minimize hHRh over h such that
hHa(φ) = 1. We will show that they are equivalent.

11:40

(58.1) hH [R− σ2
sa(φ)a(φ)H ]h ≥ 0 for any h ∈ CM×1

Positive semidefinetness is used in (58.1). Rewrite using a constraint.

(58.2) hH [R− σ2
sa(φ)a(φ)H ]h ≥ 0 such that hHa(φ) = 1

Net result

(58.3) hHRh ≥ σ2
s such that hHa(φ) = 1

Finally,

(58.4) σ2
s = min hHRh such that hHa(φ) = 1

(58.5) R− σ2
sa
Ha ≥ 0

By multiplying 58.5 R−1/2 both left and right side,
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(58.6) I − σ2
sR
−1/2aHaR−1/2 ≥ 0

Note that Rank(R−1/2aHaR−1/2) = 1 it has one non-zero eigenvalue. I− that
matrix is 1− non-zero eigenvalue. Since Trace{} of a matrix is sum of eigenvalues
(in general ?), using Trace(AB) = Trace(BA) then

(58.7) 1− σ2
sa
HR−1a ≥ 0

Then,

(58.8) σ2
s ≤

1

aHR−1a

1/aHR−1a is the output signal power hence it is the CAPON estimate of the
signal power. (58.8) is equivalent to (58.1)

59. Robust CAPON Beamformer with Single Constraint

CAPON beamformer performs very well when the steering vector a(φ) is known
accurately and Ry (theoretical) is used, However, if a(φ) knowledge is imprecise its
performance is not good.

Robust CAPON is extension of CAPON method that assumes a(φ) belongs to
uncertainty ellipsoid.

(59.1) (a− ā)∗C−1(a− ā) ≤
where ā is known(measured) steering vector. C is positive definite error covari-

ance.
When there is a little information about C, C = εI chosen and 59.1 becomes as

follows

(59.2) ||a− ā||2 < ε

59.2 is error ball.
The choice of ε does not change the performance much.

Figure 59.1. Robust Design Example

The robust CAPON beamformer (RCB) solves the following problem:
Maximize σ2

s over a and σ2
s subject to R−σ2

saa
H ≥ 0 and (a−ā)HC−1(a−ā) ≤ 1.

To avoid from trivial solution aHa = M is assumed.
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For a fixed a (if you know it) maximizing σ2
s is equivalent to

(59.3) σ̃2
s =

1

aHR−1a

Then the problem can be simplified as minimize aHR−1a over a such that ||a−
ā||2 ≤ ε by assuming C = εI. This is RCB problem.

The steps of RCB algorithm:
First compute eigen decomposition.

(59.4) R = UΛUH

and set

(59.5) b = UH ā

where

(59.6) Λ ,

λ1

. . .

λM


Solve

(59.7)

M∑
k=1

|bk|2

(1 + λλk)2
= ε

where λ in (59.7) is our γ. Solve it using Newton Method assuming the solution
is in [λL, λu].

Figure 59.2. Example Plot for Equation (59.7)

Then compute
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(59.8) ã = ā− U(I + Λλ)−1b = (I +
1

λ
R−1)ā

(59.9) hRCB =

(
R+

1

λ
I

)−1

ā

āH
[(
R+

1

λ
I

)
R−1

(
R+

1

λ
I

)]−1

ā

Compare with LSMI.

(59.10) h =
(R+ γI)−1ā

āH(R+ γI)−1ā

They are very similar. In fact if you use γ = 1/λ, it will be a very good
beamformer.

In practice, RCB is the best. MVDR is a benchmark for us.

Figure 59.3. Typical Performance Curve
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Part 8. 08/04/14 Lecture Note

60. Generalized Sidelobe Canceller (GSC)

Until now we saw block based adaptive algorithms. But GSC is sample based
adaptive. It is practical.

GSC is an alternative form of LCMV beamformer (CAPON).
Minimize hHRyh such that hHc = fH .
It is the implementation of LCMV.
Let h0 be the optimum beamformer given as (previously known)

(60.1) h0 = R−1
y c(cHR−1

y c)−1f

h0 is decomposed into two orthogonal components.

(60.2) h0 = hc − hp
hc is defined to be the projection of h0 onto the constraint subspace.
hp is defined to be the projection of h0 onto the subspace which is orthogonal to

constraint subspace. This space is represented by B matrix.

(60.3) CHM×KBM×K = 0

The projection onto the constraint subspace.

(60.4) Pc = C(CHC)−1CH

And

(60.5) hc = Pch0

(60.6) hc = C(CHC)−1f

This beamformer has closed form expression which is fixed.

(60.7) hp = −B(BHB)−1BHh0 = −P⊥c h0

where

(60.8) P⊥c , I − Pc

(60.9) hp = −B(BHB)−1R−1
y C(CHR−1

y C)−1f

The constraint

(60.10) hH0 C = fH

(60.11) (hHc − hHp )C = hHc C − hHp C
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(60.12)
(hHc − hHp )C = fH(CHC)−1CHC + fH(CHR−1

y C)−1CHR−1
y (BHB)−1BHC

Notice at second term BHC = 0.

(60.13) (hHc − hHp )C = fH

Therefore constraint is satisfied. Since the constraint is satisfied, GSC converts
the constrained problem to an unconstrained one.

Let

(60.14) hp = Bha

Minimize (hc −Bha)HRy(hc −Bha) over ha.
Take the derivative with respect to ha and equate to 0.

(60.15) ĥa = (BHRyB)−1BHRyhc

Figure 60.1. Implementation of GSC

Constrained problem is converted to unconstrained one. A data independent
beamformer, hc is used. ha is unconstrained and adaptive algorithms can be used
for it.
B is not unique. One method of finding B is

(60.16) P⊥c = I − C(CHC)−1CH

Orthogonalize P⊥c by Gram-Schmidt algorithm and choose the first (M − K)
columns as the B matrix.

In general, if the constraints are designed to present a specific response to signals
for certain directions and frequencies then columns of B will block these directions
and frequencies. Since hc processes these according to constraints desired response
is achieved.

Example
Let c = a(φ) a single constraint and hHa(φ) = 1
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(60.17) hc =
a(φ)

a(φ)Ha(φ)

(60.18) a(φ)HB = 0

Each column of B can be seen as data independent beamformer with a null
direction φ.

61. Beamspace Processing

The main advantage of beamspace processing is to reduce data and increase
computational efficiency.

Figure 61.1. Beamspace Processing

Figure 61.2. SOI Selector

The variance of DOA estimates in beamspace is usually larger than the element
space. If you are estimate DOA it is generally better to it in element space.
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Increase in probability of resolution is possible if there is some information re-
garding the sector where the SOI lie. If two signal are close to each other you may
probably separate them in beam space easily.

10:40

(61.1) y(t) = As(t) + e(t)

(61.2) yb(t) = BHb y(t) = BbAs(t) +Bbe(t)

BHb Bb = I is desired in order to have white noise assumption valid in beamspace.
Hence it has no noise amplification.

Figure 61.3. Flooring Effect Due to Matrix Multiplication and
Coloured Noise

Let Ab represents a beamspace matrix whose columns consist of a set of steering
vectors representing the sector of interest.

Taking the QR decomposition

(61.3) Ab =
[
Q1 Q2

] [
R1 0

]
(61.4) Bb = Q1

(61.5) yb(t) = BHb y(t)

(61.6) Ryb = BHb RyBb =
[
û1 û2

] [λ̂1

λ̂2

] [
û1 û2

]H
62. Beamspace MUSIC

(62.1) p(φ) =
1

aH(φ)Bbû2ûH2 B
H
b a(φ)

Note that a(φ) is still generated in element space.
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63. Beamspace Beamforming

LCMV (CAPON):

(63.1) hb =
R−1
yb
BHb a(φ)

a(φ)HBbR
−1
yb B

H
b a(φ)

For multiple constraints in the element space

(63.2) hHc = fH

(63.3) h = Bbhb

(63.4) hHb (BHb C) = fH

(63.5) Cb = BHb C

(63.6) hHb Cb = fH

(63.7) hb = R−1
yb
Cb(C

H
b R

−1
yb
Cb)
−1f

64. Adaptive Algorithms for Beamforming

Two basic approaches
Block Adaptation

Figure 64.1. Block Adaptation

Statistics are estimated from a temporal block of array data and is used an
optimum weight equation.

Continuous Adaptation Weight vector is adjusted as data is sampled such that
the resulting weight vector sequence converges to the optimum solution.
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Figure 64.2. General Adaptive Structure

Consider

(64.1) y(t) = a(φ)s(t) + v(t) + e(t)

where s(t) is SOI v(t) is noise and e(t) is interference.

(64.2) SINR =
hHaRsa

Hh

hHRv+eh
(???)

(64.3) Rv+e , E{(v(t) + e(t))(v(t) + e(t))∗}
We know that hop is the eigenvector corresponding to maximum eigenvalue of

R−1
v+eaRsa

H for rank > 1 case. And
R−1
v+ea

aHR−1
v+ea

for rank = 1 case.

Rv+e is usually replaced with the training data covariance matrix which is

(64.4) Ry = E{y(t)y(t)H}

Figure 64.3. LMS Algorithm Implementation

(64.5) y(t) = h(t− 1) + µy(t)er∗(t)

Convergence depends on the eigenvalue spread. If the spread is large convergence
is slow.
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65. Sidelobe Canceller

A simple structure of an adaptive canceller. It is shown in Figure 65.1.

Figure 65.1. Sidelobe Canceller

The main assumption is that the jammer signals are much stronger than the
SOI. Therefore adaptive weights are mostly controlled by the interference. Output
contains interference component close to primary.

Figure 65.2. Jammer Signal Suppression with Sidelobe Canceller

11:40

66. Beamforming with a Pilot Signal

66.1. Two-mode Case. Delay δk is adjusted to simulate a signal coming from a
certain direction. In P mode, input is due to pilot signal. Desired signal is also
the the pilot. A beam is formed towards φ direction. In mode A, input is due to
sensors. Adaptation is done to eliminate all received signals since desired signal is
zero. If we continue in mode A, weights send to zero. Therefore, frequent switching
between mode P and mode A should be done.

Note that as shown in from Figure 66.1, it uses delay terms. Any beamformer
uses delay terms is wideband beamformer (?).
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Figure 66.1. Two-mode Case

Figure 66.2. Single Mode Case

66.2. Single Mode Case. Signal reception on P-mode is possible. Adaptation
tries to reproduce pilot and eliminate all signals coming from the sensors. Therefore
a beam is formed toward φ direction where pilot is pointing.

As a note, GSC (Generalized Sidelobe Canceller) is developed after them and it
is the current state of the art. But roboust beamformers may be better than GSC.
However, GSC performs very well. These were usually in early analog systems.
You can do much better them.

67. Narrowband and Wideband Beamforming

67.1. Narrowband Beamforming. Previous discussions were about the narrow-
band beamformers. The common structure as discussed was this

67.2. Wideband Beamforming. Figure 67.2 is time domain implementation.
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Figure 67.1. General Narrowband Beamformer

Figure 67.2. General Wideband Beamformer (Filter and Sum)

(67.1) yF [n] =

M∑
i=1

K−1∑
m=0

h∗i,my[n−m]

68. DFT Domain Wideband Beamformer

DFT of each channel signal is taken. Each frequency has its own beamformer.
DFT and time-domain (filter and sum) based beamformers can be made equivalent.

In Figure 68.1, P is the DFT size.
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Figure 68.1. DFT Based Wideband Beamformer
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Part 9. 15/04/14 Lecture Note

69. Delay and Sum Beamformer

Consider the kth channel.

(69.1) yk(t) = h̄k(t) ∗ x(t− τk) + ēk(t) k = 1, . . . ,M

Assume that

(69.2) h̄k(t) = δ(t) ∀k

Then,

(69.3) yk(t) = x(t− τk) + ēk(t)

Figure 69.1. Delay and Sum Beamformer

70. Wideband Processing

Signals in practical applications (such as acoustics and some RF signals) are
wideband in nature. Signal power varies over the frequency band and it is advan-
tageous to process such signals with wideband techniques.

There are two types of wideband processing methods:

• Coherent Methods Use focusing or mapping matrices in order to to trans-
form covariance matrices and obtain a single covariance matrix. Then
known techniques are applied over this covariance matrix. It is a com-
putationally efficient method.

(70.1) R̄k = TkRk

where in Equation (69.1) k = 1, . . . , 128 for example.

(70.2) R̄ =
∑
k

R̄k
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• Non-coherent Methods
Process each frequently separately and then combine the result. Compu-

tationally complex method. It performs as good as non-coherent methods
(If not better) with significantly less computation.

70.1. Non-coherent Processing, MUSIC Example.

(70.3) p(φ) =

K∑
k=1

1

aH(ωk, φ)G(ωk)GH(ωk)a(ωk, φ)

G(ωk) is found from (70.4)

(70.4) R̂(ωk) =
1

N

N∑
p=1

Y (ωk, p)Y
H(ωk, p)

Figure 70.1. Non-coherent MUSIC Example

Figure 70.2. Coherent Processing Example

70.2. Coherent Processing Example. In Figure 70.2, Tk is called as focusing
(matrix) matrix. It is find by array interpolation. Generally wide processing gain
≤ K.

71. Wideband Model

Assume identical sensors, mth sensor signal can be written as

(71.1) ym(t) =

n∑
k=1

sk(t− τmn) + vm(t) m = 1, 2, . . . ,M
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where M is the number of sensors and n is the number of sources, sk(t) is kth

source signal, vm(t) is noise for mth sensor, τmn is delay for the signal propagation
from the nth source to the mth sensor. Example case is shown in Figure 71.1.

Figure 71.1. Example Wideband Case

Take DFT of 71.1,

(71.2) Ym(ω) =

n∑
k=1

Sk(ω)e−jωτmn + Vm(ω) m = 1, 2, . . . ,M

In matrix-vector form

(71.3) Y (ω) = A(ω)S(ω) + V (ω)

where

(71.4) S(ω) ,


s1(ω)
s2(ω)

...
sn(ω)


(71.5) A(ω)mk , e−jωτmk

Let τ1k be the time delay for the kth source to the reference sensor 1.

(71.6) τmk − τ1k =
1

c
[xmcosφksinθk + ymsinφksinθk + zmcosθk]

Reference sensor 1 is positioned at (0, 0, 0).

(71.7) Rs(ω) , E{S(w)SH(w)}

(71.8) Rv(ω) , E{V (w)V H(w)}
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(71.9) R(ω) , E{Y (w)Y H(w)} = A(ω)Rs(ω)AH(ω) +Rv(ω)

To estimate

(71.10) R̂(ω) =
1

Ns

Ns∑
j=1

Y (w, j)Y H(w, j) =
1

Ns
Y (ω)Y H(ω)

72. Virtual Array Processing

Usually the number of sensors is limited and sensors are preferred to be posi-
tioned in a large aperture. Therefore gaps between sensors occur. Furthermore
conversion from a certain array geometry to another may be required (Ex: UCA
to ULA). In virtual array processing, given the sensor signals of a real array sensor
signals of a virtual array are obtained. Example situation is shown in Figure 72.1.

Figure 72.1. Virtual Array Example with ULA

There are different methods for virtual array processing: Array interpolation,
manifold separation, HOS (Higher Order Statistics) are some examples.

73. Array Interpolation

73.1. Co-array. Co-array is a function which gives the number of times each spa-
tial correlation lag is contained in an array. Consider the non-redundant array
shown in Figure 73.1.

Figure 73.1. Non-redundant Array

Let h[n] denotes the sensor displacement, h(di) = 1.

(73.1) h =
[
1 1 0 0 1 0 1

]
Co-array is found as

(73.2) c[n] = h[n] ∗ h[−n]



86 ALPER YAZAR

(73.3) c[n] =



1
1
1
1
1
1
4
1
1
1
1
1
1



T

In (73.3) 4 is called as center point.
Also,

(73.4) R =

[
r00 r01 r02 r03 r04

r10 r11 r12 r13 r14

]
For example,

(73.5) r13 = E{y(1)y∗(3)}
Lag is 3− 1 = 2.

(73.6) r02 = E{y(0)y∗(2)}
Lag is 2− 0 = 2.
For ULA

(73.7) c[n] =



1
2
3
4
5
6
7
6
5
4
3
2
1



T

Advantage of no redundancy is they are placed well but disadvantage is SNR is
low.

From a standpoint of efficient spatial sampling we would like the co-array equal
to one except at the origin. If we find such a array (called as perfect array). There
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are Na = M(M − 1)/2 number of different off-diagonal elements in a M × M
covariance matrix.

Perfect arrays do not exist for M > 4. After M = 4, holes are seen in the
co-array.

Perfect arrays are shown in Figure 73.2.

Figure 73.2. Perfect Arrays

For larger arrays we consider two options

73.2. Non-redundant Arrays. We consider the array such that c[n] is either zero
or one except the origin.

Example-1 M = 5 is shown in Figure

Figure 73.3. Non-redundant Array with M = 5
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(73.8) c[n] =



1
1
1
1
1
0
1
1
1
1
1
5
s
y
m
m
e
t
r
i
c



T

73.3. Minimum Redundant Arrays. We choose the sensor positions to make
array aperture, Na, as large as possible without having any gaps. One can write

(73.9) Na =
M(M − 1)

2
−NR +NH

where NR is number of redundancies and NH is number of holes in (73.9).
For minimum redundant arrays, NH = 0.
Example-2

Figure 73.4. Minimum Redundant Array Example

For that case,
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(73.10) c[n] =



1
1
1
1
1
1
2
1
1
5
s
y
m
m
e
t
r
i
c



T

73.4. Covariance Matrix Augmentation. Given the ULA in 5×1, with M = 5
elements we have all the covariance lags up to 11 except lag = 6 (What ?). In
covariance matrix augmentation, we would like to obtainMd×Md covariance matrix
(Md > M) from M sensor data. We can do this by using fully augmentable NLA
(minimum redundant arrays like last Example-2) or by using partially augmentable
NLA (non-redundant arrays like last Example-1).

Consider Example-2. M = 5, the covariance matrix augmentation for 10 × 10
covariance matrix can be applied as follows.

Consider (73.10), using Toeplitz completion.

(73.11) R =


a0

5
a1 a2

a3

2
a4 a5 a6 a7 a8 a9

. . . a1 a2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



(73.12) r =



y0

y1

0
0
y4

0
0
y7

0
y9



[
y∗0 y∗1 0 0 y∗4 0 0 y∗7 0 y∗9

]

(73.13) a0 = r00 + r11 + r44 + r77 + r99
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(73.14) a1 = r01

(73.15) a2 = r79

(73.16) a3 = r14 + r47

74. Array Interpolation

Figure 74.1. Array Interpolation

There is a sector of interest where the source DOAs are assumed to exist. Vio-
lation of this assumption may result in significant losses.

Angular sector is diveded into angles composed of calibration sources. These
angles are φ̃i.

(74.1) φ̃i = i∆φ i = 1, 2, . . . ,
φf − φb

∆φ
, φ̃i ∈ [φb, φf ]

where also

(74.2) P ,
φf − φb

∆φ

and φf is final and φb is beginning angle.
Let signal of real array is:

(74.3) yr(t) = Ar(φ)s(t) + e(t)

and for virtual array

(74.4) yv(t) = Av(φ)s(t) + e(t)

Then Array Interpolation Marrix TM×M is obtained.

(74.5) TM×MArM×P (φ̃) = AvM×P (φ̃)

where P (number of calibratin angles) is greater or equal than M. Then,

(74.6) T = AvA
H
r (AvA

H
r )−1
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(74.6) is a classical array interpolation (AI) mapping. It has limited sector width,
biased and ill-conditioned matrix (for inversion) (?).

75. Wiener Array Interpolation

(75.1) y(t) = Ars(t) + er(t)

is given.

(75.2) ŷ(t) = Avs(t)

is desired.

(75.3) E , E{(Ty − ŷ)(Ty − ŷ)H}

(75.4)
∂E

∂TH
= 0

then,

(75.5) T = AvRsA
H
r

(
ArRsA

H
r +Re

)−1

Notice that in (75.5), Re term provides robustness for matrix inversion.
This method as better mapping accuracy especially at low SNR. Ill conditioning

in matrix inversion is less likely. A larger sector width can be used. Bias effect is
also comparably low.

If Rs = σ2
sI and Re = σesI then

(75.6) T = σ2
sAvA

H
r

(
Arσ

2
sA

H
r + σ2

e

)−1

Signal and noise variances can be estimated using SNR estimate.
One problem with array mapping (or AI) is TTH = I in general. Therefore

transform domain noise is not white. Noise flooring effect shown in Figure 61.3
occurs. So, whitening transformation should be used.

Steps for AI in DOA Estimation
First, obtain the covariance matrix estimate from the real array, R̂.
Second, compute the mapped covariance matrix using AI.

(75.7) R̂ = TR̄TH

Let,

(75.8) B = TTH

Define,

(75.9) R̃ = B−1/2R̂(B−1/2)H

(75.10) R̃ = B−1/2TĀRsĀ
HTH(B−1/2)H + σ2

eI
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Finally find the noise space eigenvectors matrix Ĝ (found from R̃) and compute

the MUSIC spectra; ||aH(φ)B−1/2Ĝ||2.

76. Noise Whitening

(76.1) y(t) = As(t) + v(t)

where v(t) is coloured noise.

(76.2) Ry = ARsA
H +Rv

Let

(76.3) ȳ(t) , R−1/2
v y(t) = R−1/2

v As(t) +R−1/2
v v(t)

(76.4) Rȳ = R−1/2
v ARsA

HR−1/2
v +R−1/2

v RvR
−1/2
v

Finally,

(76.5) Rȳ = R−1/2
v ARsA

HR−1/2
v + I

then R
−1/2
v is whitening transformation.

MUSIC when the model is modified.

(76.6) y(t) = CAs(t) + v(t)

(76.7) p(φ) =
1

aH(φ)CHGGHCa(φ)

where G is obtained from Ry (noise space eigenvectors).
For noise whitening case,

(76.8) p(φ) =
1

aH(φ)R
−1/2
v GGHR

−1/2
v a(φ)
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Part 10. 22/04/14 Lecture Note

Array Mapping Methods:

• AI (Array Interpolation)
• WAI (Wiener AI)
• RSS (Rotational Signal Subspace) No noise flooring especially for ULA
• Manifold Seperation

77. RSS (Rotational Signal Subspace)

In AI, T is designed to map Ar (Real Array Manifold) to Av (Virtual Array
Manifold).

In RSS, T is a unitary matrix (THT = TTH = I) and therefore does not lead
to noise amplification. No noise flooring effect. (See Figure 61.3).

Consider

(77.1) y(t) = As(t) + v(t)

(77.2) Ty(t) = TAs(t) + Tv(t)

(77.3) T = arg min
T

||TArM×K −AvM×K ||2 s.t. THT = I

The solution is

(77.4) TM×M = V Σ̂UH

T is called as Focusing Matrix.
where

(77.5) ArA
H
v = V ΣUH SVD

and

(77.6) Σ̂ =
[
IM×M 0

]T
(77.7) y(t) = Ar(φ)s(t) + v(t)

(77.8) yv(t) = Ty(t) = TAr(φ)s(t) + Tv(t)

(77.9) Ryv = TArRsArT
H + TTHσ2

v

in (77.9), it is assumed that Rv = σ2
vI, uncorrelated noise and signal.

(77.10) TTH = V Σ̂UHU Σ̂HV H

(77.11) TTH = V Σ̂IΣ̂HV H
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(77.12) TTH = V V H

(77.13) TTH = I

No noise amplification. But for circular arrays it has problems.

78. Manifold Separation

The idea in MS is to map the real array to a virtual array with a Vandermonde
steering vector.

There is no limitation on sector width.
This is being done with an approximate mapping as

(78.1) a(φ) ' Tg(φ)

where

(78.2) g(φ) =



e
−j
P − 1

2
φ

e
−j
P − 3

2
φ

...

e
j
P − 3

2
φ

e
j
P − 1

2
φ


where g(φ) is P × 1, T is M × P and a(φ) is M × 1 matrix.
Elements of T are:

(78.3) Tmn =
√

2π(j)nJn

(
2π

λ
rm

)
ejnφm

where (rm, φm) are polar coordinates of the mth sensor. Jn is the Bessel function
of the first kind, order n.
T is depending only ti (real) sensor positions.
g(φ) is a Fourier basis and P determines the approximation accuracy. As P →∞,

(78.1) becomes exact.
This technique does not require a sector of interest.
A suggested value for P :

(78.4) P =
8πr

λ

(78.5) y(t) = a(φ)s(t) + v(t)

(78.6) y(t) = Ta(φ)s(t) + v(t)
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(78.7) p(φ) =
1

gH(φ)THGGHTg(φ)

where (78.7) is MUSIC pseudo-spectra. G is regular noise space eigenvectors.

79. Wideband Processing (Explanation of the Covariance Matrix
Mapping)

79.1. Coherent WBP. First,you may review (71.1) and succeeding equations.

(79.1) Y (ωk) = A(ωk)S(ωk) + E(ωk)

where

(79.2) Y (ωk) ,


Y1(ωk)
Y2(ωk)

...
YM (ωk)



(79.3) S(ωk) ,


S1(ωk)
S2(ωk)

...
SM (ωk)


(79.4) A(ωk)ji , e−jωτji j = 1, 2, . . . ,M i = 1, 2, . . . , n

(79.5) Rk , E{Y (ωk)Y H(ωk)}
Using sample covariance matrix:

(79.6) R̂k ,
1

Ns

Ns∑
p=1

Y (ωk, p)Y
H(ωk, p)

Consider the steering vector at wk for ULA

(79.7) ak(φ) =


1

ejdωk/ccosφ

...
ej(M−1)dωk/ccosφ


We would like to have

(79.8) dωk = constant = d0ω0

where d is element spacing at operating frequency and ω is operating frequency.

(79.9) A(ω0) = TkA(ωk) ∀k
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Using classical array interpolation for simplicity

(79.10) Tk = A(ω0)AH(ωk)
[
A(ωk)AH(ωk)

]−1

You can use other previously learned techniques to generate T as well.

(79.11) R̄ =

K∑
k=1

TkRkT
H
k

(79.11) is the final covariance matrix carry all the information in different fre-
quency bands. This is called as focusing operation.

DOA estimation methods can be applied on R̄ for coherent wideband processing.

79.2. Non-coherent WBP.

(79.12) s(φ) ,
K∑
k=1

aH(ωk, φ)GkG
H
k a

H(ωk, φ)

Gk is obtained from Rk.

(79.13) pincoherent(φ) =
1

s(φ)

(79.13) is MUSIC pseudo-spectra.
Notice that for each frequency bin, SVD operation should be done and it has

computational load.
Coherent methods works closely well as non-coherent methods with significant

computational advantage.
10:40

80. Source Localization

The problem with passive source localization is to determine the location of an
emitting target. This is also called as position fixing (PF).

The physical quantities if localization are:

• Time of Arrival (TOA)
Time that the signal from the transmitter reaches to receiver. It requires

synchronisation.
• Time Difference of Arrival (TDOA)

Difference of the arrival times between the sensors is used. No need to
sync to transmitter but sensors should be synced.
• Phase

Direction of arrival estimates ate each sensor (array) are used (DF).
• Amplitude, RSS (Received Signal Strength)

Used especially for wireless sensors in close proximity.
• Frequency Difference of Arrival (FDOA)
• Doppler Frequency

Two types of localization problems: Navigation and Localization. They
have some common points.

In navigation transmitter positions are known and the receiver has to be
located.
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Figure 80.1. Sensor Array and Single Sensor Case

In localization, receivers have known positions and the transmitter has
to be located.

TOA TDOA
Navigation (Tx > 1, Rx = 1) GPS LORAN, DECCA, mobile positioning

Localization (Rx > 1, Tx = 1) Active Radar, Sonar Passive Radar, Sonar, Seismic

Some common techniques for localization:

• DOA ant triangulation
• TDOA (Requires wideband signal) (?)
• TOA
• Hybrid techniques: DOA with TDOA, etc ...

Localization accuracy depends on

• TDOA and DOA accuracy
• Sensor positions with respect to target
• The method used for estimation

81. Triangulation

Two or more LOB (line of bearings) assumed to be measured on the target at
the same time can be intersected for position finding (PF). This technique is called
as triangulation.

(81.1) sinφ1 =
d1

d

(81.2) d1 = dsinφ1

(81.3) sin(φ2 − φ1) =
d1

r

(81.4) r =
d1

sin(φ2 − φ1)

Using (81.2) and (81.4)
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Figure 81.1. Triangulation

(81.5) r =
dsinφ1

sin(φ2 − φ1)

(81.6) x = rcosφ2

(81.7) y = rsinφ2

It can be generalized to 3-D case.

Figure 81.2. Error Ellipsoid

11:40
There are three deterministic methods for location given the triangle of LOBs.

• a) Intersection of medians
• b) Intersection of angle bisectors
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• c) Steiner point (defined as the point where angles between lines from the
corners are 120 degree)

Figure 81.3. 3 Deterministic Methods

82. Least-Squares Location Estimation

Figure 82.1. Least-Squares Location Estimation

Let define a position vector, r:

(82.1) r =

[
xT
yT

]
(82.2) r = ri + diui

where ri is position of the ith DF sensor, di is distance from ith DF sensor to
target ui is unit direction vector where

(82.3) ui ,

[
cosφi
sinφi

]

(82.4) r =

[
xT
yT

]
=

[
xi
yi

]
+ di

[
cosφi
sinφi

]
(82.5) xT = xi + dicosφi
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(82.6) yT = yi + disinφi

From previous equations,

(82.7) − xisinφi + yicosφi = −xT sinφi + yT cosφi

(82.8)

 −x1sinφ1 + y1cosφ1

...
−xNsinφ1 + yNcosφN

 =

−sinφ1 cosφ1

...
...

−sinφN cosφN

[xT
yT

]
In matrix form,

(82.9) b(φ) = H(φ)x

(82.10) x̂ =
[
HHH

]−1
HHb

Note H(φ) is overdetermined if N > 2. It is a good thing.

83. Maximum Likelihood Algorithm

Assume that noise is Gaussian and zero-mean.

(83.1) x̂ = arg min
x

F (x, φ, θ)

(83.2) F (x, φ) =
1

2
[g(x)− φ]TS−1[g(x)− φ]

(83.3) g(x) =


g1(x)
g2(x)

...
gN (x)


(83.4) gi(x) = tan−1

(
∆yi
∆xi

)

(83.5) ∆xi = xT − xi

(83.6) ∆yi = yT − yi
where (xi, yi) is the ith DF site position and (xT , yT ) is target position.

(83.7) φ =


φ1

φ2

...
φN
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(83.8) S = diag(σ2
1 , σ

2
2 , . . . , σ

2
N )

where N is the number of DF sites and σ2
i is variance of azimuth estimates.

The solution can be found by using Gauss-Newton iterative method.

(83.9) x̂M+1 = x̂M + [gTx S
−1gx]−1gTx S

−1[φ− g(x̂M )]

(83.10) gx ,



−∆y1

r2
1

∆x1

r2
1

−∆y2

r2
2

∆x2

r2
2

...
...

−∆yN
r2
N

∆xN
r2
N


gx is called as Jacobian Matrix.

(83.11) r2
i = x2

i + y2
i

To start search, result of LS solution may used as initial point.
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Part 11. 13/05/14 Lecture Note

84. Sources of Error in Triangulation

• Noise
• Measurement Noise
• Geometric Dilution of Precision in Triangulation

If the target is farther away from the sensor baseline, the error in position
fixing increases.

Figure 84.1. Geometric Dilution of Precision in Triangulation

• Line of Bearing Error
• Effect of Navigation Error

The errors in sensor position affects the PF accuracy. Usually the error
is due to GPS measurements.

Figure 84.2. Placement Errors

85. Single-Site Location Estimation (SSL)

RF case, HF frequency (3 - 30 MHz)
HF signals are long-range signals that are reflected (refracted) in the ionosphere

back to earth.
Measuring DOA (azimuth and elevation) and the height of the point of the

reflection allows us to calculate the position of the emitter.
Ionosphere height may no be needed when there are two ore more ray paths

arriving at the sensor side.
10:40
Ionospheric sounders are used to measure the height of ionosphere. The time of

flight of pulse is used to find the height of ionosphere.
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Figure 85.1. Reflections from Ionosphere

Figure 85.2. SSL Assumption

Figure 85.3. Passive SSL

85.1. Passive SSL. When the signals arrive from two directions, there is no need
to know height.

(85.1) R =
cτ

tanθ2 − tanθ1
=
cos

θ2 − θ1

2

sin
θ2 + θ1

2

where τ is the time difference between two paths.
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86. TDOA-FDOA Location Estimation

Figure 86.1. TDOA Scenario

(86.1) ŝi(t) = ejαie−jωditŝ(t− θi)

where τi is time delay.
TDOA requires at least 4 sensors.
Narrow Band Received Signal

(86.2) ŝi(t) = ejαie−jωditŝ(t− τi)

where

(86.3) αi , ωcτi

(86.4) ωdi ,
ωcvi

c

τi is the time delay.
To estimate time of differences radars (planes) should have perfect synchroniza-

tion.
Delay Estimation
Cross correlation of time signals

(86.5) Rs1s2(τ) =

∫ T

0

s1(t)s∗2(t− τ)dt

find peak of |Rs1s2(τ)|.
Doppler Shift

(86.6) Rs1s2(ω) =

∫ T

0

s1(t)s∗2(t)e−jωtdt
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find peak of |Rs1s2(ω)|.
TDOA/FDOA
Ambiguity function

(86.7) A(ω, τ) =

∫ T

0

s1(t)s∗2(t− τ)e−jωtdt

find peak of |A(ω, τ)|.

87. Quadratic Localization Methods

TDOA is an example of quadratic methods. LOP (Lines of position) curves are
intersected to estimate the emitter location.

Advantages

• In triangulation an array is used for DOA measurement. At least two DF
site is required for PF (position finding).

In TDOA, a single antenna/sensor and at least 4 sensors are required
for 3-D PF.
• Usually higher precision and accuracy can be obtained in TDOA (especially

for radar signals)

Disadvantages

• Accurate and synchronized clocks are needed for each sensor.

Simple Case Example

Figure 87.1. Simple Example

c is speed of flight, ti is the time of flight between the target and sensor.

(87.1) ri = cti

(87.2) τ = t2 − t1 =
1

c
(r2 − r1)

(87.3) ri =
√

(xT − xi)2 + y2
T i = 1, 2
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(87.4) ∆r = r2 − r1 =
√

(xT − x1)2 + y2
T −

√
(xT − x2)2 + y2

T

(87.5) d = x1 + x2

(87.6)
x2

a
− y2

b
= 1

(87.6) is hyperbola.

(87.7) a =
∆r2

4

(87.8) b =
d2

4
− ∆r2

4

(87.9) y = ± b
a
x

(87.9) are the asymptotes which define DOA for far field sources.
Line of positions (LOP) are isochrones.

Figure 87.2. Line of Positions Isochrones

88. Location Estimation by TDOA

(88.1) τi = ti − t1
t1 is the time of flight to the reference sensor.
(xT , yT , zT ) is the target position.

(88.2) (ct1)2 = d2 = (x1 − xT )2 + (y1 − yT )2 + (z1 − zT )2
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(88.3) (cti)
2 = (d+ cτi)

2 = (xi − xT )2 + (yi − yT )2 + (zi − zT )2 i = 1, 2, 3, 4

Linearization

• Addition of a new variable
• Taylor series expension

11:40

88.1. Addition of New Variable.

(88.4) d2 = (x1 − xT )2 + (y1 − yT )2 + (z1 − zT )2

(88.5) d2 = x2
1 + y2

1 + z2
1 − 2x1xT − 2y1yT − 2z1zT + x2

T + y2
T + z2

T

(88.6) d2 + 2dcτ2 + c2τ2
2 = x2

2 + y2
2 + z2

2 − 2x2xT − 2y2yT − 2z2zT + x2
T + y2

T + z2
T

Let’s subtract (88.5) from (88.6)

(88.7)
−2dcτ2−c2τ2

2 = (x2
1+y2

1+z2
1)−(x2

2+y2
2+z2

2)+2(x2−x1)xT+2(y2−y1)yT+2(z2−z1)zT

where x1, x2, y1, y2, z1, z2 is known in (88.7).
Similarly obtain (88.6) for other is and subtract (88.5) from them.
Then,

(88.8)

2


x1 − x2 y1 − y2 z1 − z2 −cτ2
x1 − x3 y1 − y3 z1 − z3 −cτ3

...
...

...
...

x1 − xN y1 − yN z1 − zN −cτN



xT
yT
zT
d

 =

 c2τ2
2 + x2

1 + y2
1 + z2

1 − x2
2 − y2

2 − z2
2

...
c2τ2

N + x2
1 + y2

1 + z2
1 − x2

N − y2
N − z2

N



(88.9) Ax = b

Then,

(88.10) x = (AHA)−1AHb

3D coordinates can be found by using at least 5 sensors. (N ≥ 5)
It is desired to have more sensors and an overdetermined set of equations to

improve the accuracy.
Sensors should be sufficiently further away from each other in order to have

different τi.
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Figure 88.1. Taylor Series Approach Assumption

88.2. Taylor Series Approach. The equation can be linearized by a Taylor series
expansion about an initial estimate of target location (xTO , yTO , zTO )

(88.11) f(x) = f(xTO ) +
f ′(xTO )

1!
(xT − xTO ) +

f ′′(xTO )

2!
(xT − xTO )2 + . . .

The first order term is kept ignoring the rest.
Assume that there are two sensors which move in time and measurements of a

fixed target are taken.

(88.12) c∆ti = di,1 − di,2

(88.13) ∆ti = ti,1 − ti,2

c∆ti = fi(xT , yT , zT ) = ||
[
xT yT zT

]T − [xi,1 yi,1 zi,1
]T ||2

−||
[
xT yT zT

]T − [xi,2 yi,2 zi,2
]T ||2

where i = 1, 2, . . . k

(88.14)

(88.15) Pi , c∆ti

is measured.
Using Taylor series expansion with initial target position.

(88.16) Pi − fi|xT0 ,yT0 ,zT0 =
∂fi
∂xT
|xT=xT0

∆x+
∂fi
∂yT
|yT=yT0

∆yT +
∂fi
∂zT
|zT=zT0

∆zT

(88.17) ∆xT = xT = xT0

(88.18) ∆yT = yT = yT0

(88.19) ∆zT = zT = zT0
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(88.20)


P1 − f1

P2 − f2

...
Pk − fk

 =



∂f1

∂xT

∂f1

∂yT

∂f1

∂zT
∂f2

∂xT

∂f2

∂yT

∂f2

∂zT
...
∂fk
∂xT

∂fk
∂yT

∂fk
∂zT


xT − xT0

yT − yT0

zT − zT0



(88.21) Ax = P

(88.22) x̂ = (AHA)−1AHP

(88.23) x̂T = x̂+

xT0

yT0

zT0


Accuracy depends on:

• Sensor geometry with respect to target
• Timing accuracy of the receiver
• Multipath
• Inaccuracy in sensor positions
• Frequency synchronization between transmitter and receiver

89. ML Source Localization

Noise is zero-mean Gaussian.
The cost function for ML

(89.1) Fτ (p) =
1

2
(ĥ− h(p))TC−1

τ (ĥ− h(p))

where Cτ is the covariance matrix of range differences.

(89.2) ĥ = c


τ2
τ3
...
τM


where τi = ti − t1 is the time difference with respect to first sensor.

(89.3) h(p) =


h2(p)
h3(p)

...
hM (p)


(89.4) hi(p) = ||pi − pT || − ||p1 − pT ||

where pT is target and pi is sensor position.
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Assume that TDOA measurements are independent from each other.

(89.5) Rτ = c2σ2
TDOA



1
1

2

1

2
. . .

1

2
1

2
1

. . .
...

...
. . .

. . .
...

1

2
. . .

1

2
1


If a reference sensor is used where each TDOA is computed with respect to this

sensor, there is a correlation between measurements and covariance matrix becomes
as this.

Then MLE algorithm is:

• Estimate the TDOA for sensor pairs.

• Obtain ĥ and Cτ
• Perform a grid search at each point

– Calculate the range difference between the first sensor and others with
respect to the target, hi(p)

– Calculate the cost function, Fτ (p).
• Find the target position which minimizes the cost function.
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Part 12. 20/05/14 Lecture Note

90. Received Signal Strength (RSS) Location

Figure 90.1. RSS Example

We will consider differential RSS method which is suitable for passive incorpo-
rating localization. Otherwise transmitter power should be known.

Advantages

• Simplicity
• Size
• Power
• Complexity
• Cost

Disadvantages

• Noisy range estimates
• Multipath
• Attenuation due to environmental factors.

90.1. Signal Model.

(90.1) P1 = PT − 10γlog10d1 + n1

(90.2) Pi = PT − 10γlog10di + ni i = 1, 2, . . . , N N ≥ 4

where Pi received signal power in dB and PT is transmitter power in dB. γ is
path loss factor (2 ≤ γ ≤ 6). di is distance between sensor and transmitter. ni is
the noise (shadow fading)

(90.3) di =
√

(xT − xi)2 + (yT − yi)2

In order to eliminate PT , subtract (90.1) from (90.2).

(90.4) Pi1 = 0.1ln(10)[Pi − P1] = −γln
(
di
d1

)
+mi1 i = 2, . . . , N

where

(90.5) mi1 , 0.1ln(10)(ni − n1)
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In order to linearize (90.3), d2
i is required.

(90.6) e−2/γPi1 =

(
di
d1

)2

e−2/γmi1

(90.7) E{e−2/γPi1} =

(
di
d1

)2

e−2/γ2(λ2
i+λ

2
1) i = 2, . . . , N

(γ or γ2 at exponent?)

(90.8) λ2
i , 0.01[ln(10)]2σ2

i

(90.9) σ2
i , V ar{ni}

Unbiased estimate of
d2
i

d2
1

(90.10)
d2
i

d2
1

= ri1 = e
−

2

γ
Pi1−

2

γ2
(λ2
i+λ

2
1)

Ignoring noise

(90.11) ri1d
2
1 = d2

i i = 2, . . . , N

From (90.3)

(90.12) d2
i = x2

T + y2
T − 2xixT − 2yiyT + x2

i + y2
i i = 2, . . . , N

(90.13) R , x2
T + y2

T

(90.14) ri1d
2
1 = ri1

[
(xT − x1)2 + (yT − y1)2

]
(90.15) ri1d

2
1 = ri1

[
R− 2x1xT − 2y1yT + x2

1 + y2
1

]
From (90.12) and (90.15),
For i = 2,

(90.16) R(r21− 1) + (2x2 + 2x1r21)xT + (2y2− 2y1r21)yT = x2
2 + y2

2 − r21(x2
1 + y2

1)

Let,

(90.17) A ,

 2x2 − 2r21x1 2y2 − 2r21y1 r21 − 1
...

...
...

2xN − 2rN1x1 2yN − 2rN1y1 rN1 − 1
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(90.18) θ ,

xTyT
R



(90.19) b ,

 x2
2 + y2

2 − r21(x2
1 + y2

1)
...

x2
N + y2

N − rN1(x2
1 + y2

1)


(90.20) Aθ = b

LS solution is:

(90.21) θ̂ =

xTyT
R

 = (AHA)−1AHb

Define error vector,

(90.22) W ,


W2

W3

...
WN


(90.23) wi = d2

1ri1 = d2
i i = 2, . . . , N

(90.24) E{w} = 0

(90.25) Cw = ΣΛΣH

(90.26) Σ = diag(r21, . . . , rN1)

(90.27) Λ =


e

4

γ2
(λ2

2+λ2
1)

− 1 e

4

γ2
λ2
1

− 1 . . . e

4

γ2
λ2
1

− 1
...

. . .

e

4

γ2
λ2
1

− 1 . . . . . . e

4

γ2
(λ2
N+λ2

1)

− 1


90.2. BLUE (Best Linear Unbiased Example) Solution.

(90.28) θ̂ = (AHC−1
w A)−1AHC−1

w b

10:40
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91. Calibration

Calibration corresponds to correction due to unknowns or uncertainties of the
system parameters.

In practical systems, it is not possible to operate the system without appropriate
calibration.

91.1. Bench Test and Calibration. It is shown in Figure 90.1.

Figure 91.1. Built-in Calibration Example

91.2. Anechoic Chamber Test and Calibration. It is an special shielded room
with RF absorbers on the walls as well as ground and ceiling. Turn table is used
to rotate DF system. A calibrated antenna and transmitter is used as source to
test the system for different frequency (*), azimuth (**), elevation (*), modulation,
polarization. (*: Importance)

91.3. Calibrated Site Test and Calibration. A calibrated open field test facility
bridges the the gap between production and operational use. Test area should have
15λ to 10λ dimensions at the lowest frequency.

Figure 91.2. Open Field Calibration
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For each frequency, azimuth. elevation, test equipment is rotated around a circle
and an emitter is used to collect the calibration data. Calibration data can be
interpolated to obtain better angular coverage.

91.4. Installed Test and Calibration. DF system is installed on its platform
and tested in open test field.

91.5. Operational Test and Calibration. If your system is fixed at specific field,
this is an important method.

Nothing to say about !
11:40

92. How to Calibrate?

Consider M sensor outputs, baseband signals (RF situation).

(92.1) y(t) =

n∑
k=1

a(φk)sk(t) + v(t) = A(φ)s(t) + v(t) t = 1, . . . , N

(92.1) shows ideal case. Practical case shown in (88.13).

(92.2) y(t) = CGA(φ)s(t) + v(t) t = 1, . . . , N

where C is mutual coupling matrix and G is gain-phase mismatch matrix.
Error sources:

• Mutual coupling
• Uncertainty for antenna positions and orientations
• Gain-phase imbalance of receivers.
• IQ imbalances of receivers
• Near-field scattering due to platform or terrain
• Non-linear components
• Quantization in phase shifters, A/D converters

Figure 92.1. Mutual Coupling

(92.3) V −n = Sn,n+1V
+
n−1 + Sn,nV

+
n + Sn,n+1V

+
n+1

(92.3) gives reflected wave at antenna n.
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(92.4) V − = SV +

S is scattering matrix and Sij are scattering parameters.
For 2 antenna case:

(92.5)

[
V −1
V −2

]
=

[
S11 S12

S21 S22

] [
V +

1

V +
2

]
In (92.5), S11 is input port reflection coefficient, S12 is reverse voltage gain, S21

is forward voltage gain, S22 is output port reflection coefficient.

(92.6) Γ =
Vr
Vf

where Vr is reflected wave and Vf is forward wave. When Γ = ±1 corresponds
to maximum reflection and Γ = 0 corresponds to perfect match, no reflection.

(92.7) V SWR =
1 + γ

1− γ
=
Vmax
Vmin

≥ 1

(92.8) Z = (I − S)−1(I + S)

(92.9) C = Z−1

where Z is mutual impedance matrix and C is mutual coupling matrix.

92.1. Auto-Calibration (Online Calibration) (Self Calibration).

(92.10) y(t) = CGA(φ)s(t) + v(t)

C has a structure for uniform arrays like circular, linear arrays, etc.

(92.11) C =


c0 c1 c2 0
c1 c0 c1 c2
c2 c1 c0 c1
0 c2 c1 c0


(92.11) is called as Bended Toeplitz Matrix, it is for linear arrays.

(92.12) G = diag(g1, g2, . . . , gm)

For structured C matrix

(92.13) ā1 = Ca1

(92.14) ā1 = Ta1c = Ta1

c0c1
c2


(92.15) P̃ = (CHTa1GG

HTa1C)−1
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(92.16) Ĉ = arg max
C

P̃

where G is obtained from Ry as in MUSIC algorithm.
In realistic scenarios self calibration doesn’t have very much chance.

92.2. Offline Calibration. Calibration data is collected in a controlled manner.

(92.17) xc(t) = acsc(t) + vc(t) t = 1, . . . , Nc c = 1, . . . , C

where Nc is number of snapshots and C is number of emitter positions and ac
is true array steering vector in (92.17).

92.2.1. Coherent Calibration. In this case, sc(t) is known and true array steering
vector estimated as

(92.18) âc =

∑Nc
t=1 xc(t)s

∗
c(t)∑Nc

t=1 |sc(t)|2

(92.19) âc = Ta

where T is calibration matrix and a is nominal and âc is true steering vector in
(92.18).

This result perfects calibration vectors as Nc →∞.
There is a synchronization between transmitter and receiver in this structure.

92.2.2. Non-Coherent Calibration. When sc(t) is not known âc is estimated from
the principle eigenvector of the sample covariance.

(92.20) R̂c =
1

Nc

Nc∑
t=1

xc(t)xc(t)
H =

M∑
k=1

x̂kêkê
H
k

(92.21) âc = αê1

How to apply MUSIC?

(92.22) xc(t) = ac(φ)sc(t) + vc(t)

(92.23) T−1xc(t) = a(φ)sc(t) + ec(t)

then use MUSIC.
A better approach is:
Rc → Gc

(92.24) p(φ) =
1

aHTHGcGHc Ta
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Part 13. Code Appendix

. MATLAB Code Figure 9.2

1 %Alper Yazar

2 close a l l ;

3 clear a l l ;

4

5 M = 100 ;

6 co s ph i = linspace (−1 ,1 ,100) ;

7 lambda = 2 ;

8 d = 0 . 1 ;

9 num = sin (M/2 ∗ d ∗ 2 ∗ pi /lambda ∗ co s ph i ) ;

10 denum = sin (1/2 ∗ d ∗ 2 ∗ pi /lambda ∗ co s ph i ) ;

11 fn = 1 / M ∗ num ./ denum ;

12

13 plot ( cos ph i , fn , ’ l i n ew id th ’ , 2)

14 grid on ;

15 xlabel ( ’ $cos \phi$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ ,15)

16 ylabel ( ’ $B {AF} (\ phi ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 15)

17

18 annotat ion ( ’ doublearrow ’ , [ 0 . 4 8 75 0 . 5 4 8 1 2 5 ] , . . .

19 [0 .758767454350159 0 .758767454350159 ] ) ;

20

21 annotat ion ( ’ textbox ’ , . . .

22 [ 0 . 5 6 0 0.728767454350159 0.058125 0 .0510204081632653 ] , ’ I n t e r p r e t e r

’ , ’ l a t e x ’ , . . .

23 ’ S t r ing ’ ,{ ’ $Bw {HP}$ ’ } , . . .

24 ’ FontSize ’ , 1 5 , . . .

25 ’FontName ’ , ’ Agency FB ’ , . . .

26 ’ L ineSty l e ’ , ’ none ’ ) ;

27

28 annotat ion ( ’ doublearrow ’ , [ 0 . 4 40625 0 . 5 9 4 3 7 5 ] , . . .

29 [0 .284714285714286 0 .285714285714286 ] ) ;

30

31 annotat ion ( ’ textbox ’ , . . .

32 [ 0 . 452875 0.295918367346939 0.038375 0 .0484693877551015 ] , ’ S t r ing ’

,{ ’ $Bw {NN}$ ’ } , . . .

33 ’ FontSize ’ , 1 5 , . . .

34 ’FontName ’ , ’ Agency FB ’ , . . .

35 ’ L ineSty l e ’ , ’ none ’ , . . .

36 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

37

38 t i t l e ( [ ’ $B {AF} (\ phi ) $ f o r ULA where $M$=’ num2str(M, ’%g ’ ) ’ $\
lambda$=’ num2str( lambda , ’%g ’ ) ’ $d$=’ num2str(d , ’%g ’ ) ] , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 12)
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MATLAB Code Figure 10.1

1 %Alper Yazar

2 close a l l ;

3 clear a l l ;

4

5 M = 100 ;

6 theta = linspace (0 ,2∗pi , 1 e5 ) ;

7 co s ph i = cos ( theta ) ;

8 lambda = 2 ;

9 d = 0 . 1 ;

10 num = sin (M/2 ∗ d ∗ 2 ∗ pi /lambda ∗ co s ph i ) ;

11 denum = sin (1/2 ∗ d ∗ 2 ∗ pi /lambda ∗ co s ph i ) ;

12 fn = 1 / M ∗ num ./ denum ;

13

14 %fn = 20∗ l og10 ( abs ( fn ) ) ;

15

16 polar ( theta , fn )

17 grid on ;

18 xlabel ( ’ $\phi$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i ze ’ ,15)

19 ylabel ( ’ $B {AF} (\ phi ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 15)

20 t i t l e ( [ ’ $B {AF} (\ phi ) $ f o r ULA where $M$=’ num2str(M, ’%g ’ ) ’ $\
lambda$=’ num2str( lambda , ’%g ’ ) ’ $d$=’ num2str(d , ’%g ’ ) ] , ’

i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ Fonts i z e ’ , 12)
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