
OpenStack Generalization for Hardware Accelerated
Clouds

Ahmet Erol∗†, Alper Yazar∗†, Ece Güran Schmidt†

† Department of Electrical and Electronics Engineering, METU, Ankara, Turkey

{ahmet.erol, alper.yazar, eguran}@metu.edu.tr
∗ Defence Systems Technologies, ASELSAN, Ankara, Turkey

{ahmeterol, ayazar}@aselsan.com.tr

Abstract—OpenStack is a widely used management tool for
cloud computing which is designed to work on servers and
allocate standard computing resources such as CPU, memory
or disk. The current trend for integrating different hardware
accelerators such as FPGAs and GPUs in the cloud requires
managing these heterogeneous resources. In this paper, we pro-
pose a generalization for OpenStack Nova project which extends
the relevant data structures to include these new resources. More
importantly, we present a new lightweight Nova Compute module
that we call Nova-G Compute. Nova-G Compute is suitable to
work with different hardware platforms and can communicate
with the rest of the OpenStack Projects. We implement a
hypervisor-like software to enable Nova-G Compute accessing the
FPGA resources. We perform experimental evaluation of Nova-G
Compute using the known and used OpenStack benchmarking
tool Rally. Our results show that Nova-G Compute works as
desired without any reduced performance compared to standard
Nova.

Index Terms—Cloud computing, virtualization, OpenStack,
FPGA, Nova, Rally

I. INTRODUCTION

Cloud computing has become a popular computing model

in the recent years as it exploits the economies of scale for

efficient use of computing resources. The data centers of today

are mostly cloud based with virtualized servers to provide on-

demand scalability and flexibility of the available resources

such as CPU, memory, data storage and network bandwidth.

A cloud data center provider may offer Infrastructure as a

Service (IaaS), where the user gets a virtual machine (VM)

with processing, memory, storage and networking resources,

which can be installed with any desired operating system and

software. Differently, Platform as a Service (PaaS) commonly

provides a ready environment with operating system, pro-

gramming language execution environment, database and web

server for developers to test and deploy their programs and

applications. Finally in Software as a Service (SaaS), the user

only accesses the provided application for example via a web

browser without any control of the underlying infrastructure.

OpenStack is an open source software that is preferred by

many large cloud providers [1] to assign physical resources

to users in the form of Virtual Machines (VM) in cloud

This work was supported by the Scientific and Research Council of Turkey
(TUBITAK) [Project Code 117E667-117E668].

computing systems. OpenStack is composed of a number of

projects with different functionalities such as authentication,

network management and image services. The actual manag-

ing of resources by means of virtualization is carried out by

the OpenStack Nova project. Nova has two components called

Nova Conductor and Nova Compute. A controller node in the

managed cloud runs Nova Conductor and each server that is

provisioned for VMs runs Nova Compute.

The slowdown of Moore’s law and the increased data and

problem sizes together with the development of high per-

formance programmable hardware platforms such as FPGAs

increase the popularity of hardware accelerators. Hardware

accelerators can provide better performance and less energy

consumption depending on the problem properties and size [2].

On one hand, these different hardware platforms may not be

compatible with the operating system and hypervisor software

used on standard cloud servers. Furthermore, their processing

capabilities may be more limited and they might not be able

to run OpenStack in a scalable and high performance manner.

On the other hand, integrating hardware resources in the

cloud based data center should be seamless, together with

virtualization and dynamic resource allocation capabilities.

OpenStack is designed to work in cloud data centers with

conventional servers. To this end, the current Nova implemen-

tation is limited to traditional computing resources such as

CPU, memory and disk. Furthermore, Nova is only compatible

with certain operating systems and hypervisor software.

The first contribution of this paper is a new lightweight

project that we call Nova-G Compute which is designed to

replace the standard Nova Compute for such heterogeneous

hardware platforms. Nova-G Compute can work with the stan-

dard OpenStack projects by sending and receiving messages

in the correct format. The implementation of Nova-G is in

Python language and is independent of the operating system.

In this way, different hardware platforms can be supported.

The second contribution is extending the data structures of

Nova Controller with the generalized resource types to work

with Nova-G Compute. Different than the previous work, new

resource types are defined at the same level with conventional

server resources which enables using the standard Nova Sched-

ulers to allocate the available resources to the VM requests.

Nova-G Compute includes a generalized hypervisor driver

978-1-7281-1856-7/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

�������	
�
�
��
�
�����

�������	
�
�
��
�
������
��
�
������

���	�
�������
�
�������
��

�
��
�
�����
� �
��
���������

�
��
��� ������	�����
Controller Node

Compute Nodes

�
����
��
����	
!	�
�"�		�#��#

Fig. 1. Detailed Nova block diagram.

to access the available resources on the respective hardware

similar to standard Nova Compute. To this end, we implement

FPGAvisor software that functions similar to a hypervisor for

FPGA as an example for allocation of non-standard hardware

resources.

We demonstrate the functionality and performance of Nova-

G Compute with a number of experiments including tests with

Rally Tool which is the OpenStack framework for performance

analysis and benchmarking. Our results show that Nova-G

Compute can work seamlessly with OpenStack and can boot

VMs as desired without any performance decrease compared

to Nova Compute.

II. OPENSTACK AND HETEROGENEOUS CLOUD

COMPUTING

A. OpenStack

OpenStack is a very popular cloud resource management

tool with yearly increasing revenue in the market [3]. It

controls compute, storage, and networking resources of the

cloud by provisioning virtual machines (VM) [4]. These VMs

are configured according to predefined flavors which quantify

the amount of resources of the available types such as CPU,

memory, disk and networking. An administrative user can

create, edit, and delete flavors.

Main control functions of OpenStack run on a controller
node whereas clients run on the compute nodes that are

managed. OpenStack consists of many modules that are called

projects.

Nova is the OpenStack project that enables provisioning

of compute nodes through virtualization technologies such as

hypervisors. The components of Nova are shown in Figure 1.

Nova API allows access to Nova services such as creat-

ing VMs, updating flavors, listing hypervisor properties [5].

Nova Conductor is the main part of Nova that manages

its operations. It runs on the controller node and all other

components of Nova communicate with Nova Conductor.

Nova Compute is the client software that runs on the compute

nodes. Nova Scheduler selects the compute node to run the

requested VM that is defined by flavors according to available

resources in the system. Flavor data structure is characterized

by sqlalchemy api model. All the information about

resources allocations which is defined by API models stored

in the Database (DB) on the controller node.

Keystone provides the authentication mechanism. Most API

clients must be authenticated by Keystone to make API re-

quests. [6]. Neutron provides network connectivity to the VMs

created by Nova. VMs have vNIC (virtual Network Interface

Card) interfaces created by hypervisors. vNIC connectivity is

established via networking services of Neutron [7]. Neutron

provides an API to create and manage networks, create/delete

ports and manage L3 services [8].

Glance is a VM image service which discovers, registers,

and retrieves virtual machine images [9]. Horizon provides

web user interfaces to other OpenStack projects for effortless

cloud management activities such as creating VMs, monitoring

and configuring networks. etc [10].

B. Nova VM Instantiation

OpenStack instantiates a new VM by the following opera-

tions which are mainly carried out by Nova [4].

1) User first gets authenticated by Keystone and then

requests a VM of a selected flavor through Nova API

which verifies and forwards the request to Nova Con-

ductor.

2) Nova Conductor formats the request for scheduling and

forwards it to Nova Scheduler.

3) Nova Scheduler filters the available resources according

to the requested VM flavor and selects a compute node

to run the VM.

4) Nova Conductor sends the VM information to Nova

Compute on the the selected compute node.

5) Nova Compute requests IP & MAC addresses from

Neutron and the disk image to run the VM from Glance.

Once the everything is ready, it calls the hypervisor on

the compute node to run the requested VM.

6) When the VM is successfully instantiated by hypervisor,

Nova Conductor updates the DB and notifies the user.

All the information passing in the above steps among

the OpenStack projects together with other communication

to other components such as MySQL database, hypervisors,

vNICs use Advanced Message Queue Protocol (AMQP) to

communicate [11]. Oslo messaging protocol is implemented

over a Rabbit Message Queue [12] to make Remote Procedure

Calls (RPC). OpenStack supports a list of different hypervisors

through specific drivers [13].

C. Heterogeneous Cloud Computing and OpenStack Support

Employing different hardware platforms in the cloud is a

popular topic both academically and commercially. To this

end, cloud computing systems are integrated with hardware

accelerators realized on FPGA platforms [14], GPU (Graphics

Processing Unit) [15] , TPU (Tensor Processing Unit) [16] and

IoT Hardware [17]. [18] is a pioneering work that proposes a

cloud-based data center architecture accelerated with reconfig-

urable FPGA for use in Microsoft data centers. In this study,

an Altera Stratix V-based hardware accelerator card was added

to each compute node which can accelerate an application

running on the machine on which it is connected or can be

used as a network appliance without putting a load on the

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

CPU. Regarding the management of the FPGA resources [19]

proposes assigning FPGA reconfigurable regions in the scope

of IaaS/HaaS (Hardware as a Service) by using OpenStack.

However, it does not describe how FPGA resources are de-

fined and assigned using Nova. In the follow-up work [20],

virtualization of hardware accelerators is discussed without

giving details on what should be changed in OpenStack and

how it should be implemented. Here it is important to note

that FPGA SoC platforms come with a processor [21] which

enables the cloud service provider to employ stand alone

FPGA cards without a server for implementing energy efficient

accelerators.

The sub-field extra_spec of Nova data structure is used

to integrate GPUs into OpenStack platform in the paper [22].

As this field is a sub-field of existing standard resource types,

it cannot be used by the standard Nova Schedulers. In [23],

network is accelerated by transferring Openstack network

services to switch hardware and allowing Nova to access

them. In [24], a new component named IoTronic is added to

OpenStack as Sensing as a Service for IoT systems. OpenStack

has a recent project called Cyborg [25] which is proposed as

a service for managing accelerators such as FPGAs, GPUs

etc. Cyborg is designed to work with Nova Compute as an

agent and cannot work stand alone. Hence, it does not support

heterogeneous cloud hardware that is not connected to a CPU

via PCI. Moreover, effective scheduling of accelerators are

not possible because it uses extra_spec field to define the

different types of resources similar to [22].

III. GENERALIZATION OF OPENSTACK NOVA

The current OpenStack implementation is limited to manage

conventional compute resources such as CPU, RAM and disk.

Moreover, compute nodes are restricted to standard server

hardware and few operating systems. To this end, we propose

an extension of Nova data structure to accommodate new

resource types. More importantly we propose a new and

lightweight Nova Compute that we call Nova-G Compute

which runs on any OS or hardware platform.

A. Nova Data Structure Extensions and Modifications to Sup-
port Generalized Resources

Compute Node Resource Database Extensions: MySQL

is used as the main database in OpenStack environment. Nova

Controller stores the information about the types of resources

and their current usage in database tables. We extend this

table with the new resource types and their usage values

maintaining the original data structure. Table I shows a partial

example with the current resource types and two new added

fields. Here, resource_g1 can represent fpga resources

whereas resource_g2 can represent gpus. The usage of

these resources in the related compute node is represented

as an Integer type. More resource types can be added to

the database in the same manner. As we preserve the data

structure, each new resource type can be chosen independently

in a flavor to create new VM configurations. Generalized

resources do not have to be on the same compute node

TABLE I
EXTENDED COMPUTE NODE RESOURCE DATABASE.

Field Type Field Type
id Integer service_id Integer

vcpus Integer vcpus_used Integer
memory_mb Integer memory_mb_used Integer
local_gb Integer local_gb_used Integer

hypervisor_type Text hypervisor_version Text
cpu_info Text

resource_g1 Integer resource_g1_used Integer
resource_g2 Integer resource_g2_used Integer

with vcpus or memory. With the help of this flexibility, one

can define a flavor without any cpu or memory that is only

including generalized resources. Nova-G Compute module will

instantiate resource_g type resources defined in flavor.

For example if the compute node is a standalone FPGA

accelerator card, a VM without vCPU and with a fpga can

be instantiated.

Flavor Data Structure Extensions: Nova Controller rep-

resents the flavors for VMs using sqlaclhemy models. To this

end, sqlalchemy api model should also be modified by adding

resource_g fields so that applications which are trying to

connect database can use the new resource types. The modified

model is shown in the Listing 1.

Listing 1. Extended Flavors sqlalchemy model after modifications

class Flavors(API_BASE):
__tablename__ = ’flavors’
__table_args__ = (
schema.UniqueConstraint("flavorid", name="

uniq_flavors0flavorid"),
schema.UniqueConstraint("name", name="

uniq_flavors0name"))

id = Column(Integer, primary_key=True)
name = Column(String(255), nullable=False)
memory_mb = Column(Integer, nullable=False)
vcpus = Column(Integer, nullable=False)
resource_g1 = Column(Integer, nullable=False)
resource_g2 = Column(Integer, nullable=False)
root_gb = Column(Integer)
ephemeral_gb = Column(Integer)
flavorid = Column(String(255), nullable=False)
swap = Column(Integer, nullable=False, default

=0)
rxtx_factor = Column(Float, default=1)
vcpu_weight = Column(Integer)
disabled = Column(Boolean, default=False)
is_public = Column(Boolean, default=True)

Nova Scheduler Operation with Resource Extensions:

Nova scheduler uses these extended flavors to choose suitable

compute nodes for the new VMs that are requested. There-

fore, adding resource_g fields at the same level as the

conventional resources such as vcpus give lots of flexibility

for scheduling algorithms. All of the the existing filtering

and weighting algorithms of Nova Scheduler can be extended

to include resource_g or new filtering algorithms can be

added to leverage efficiency of scheduling algorithms.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

B. Nova-G Compute

OpenStack provides virtualized compute resources by Nova

Compute which works on compute nodes with the help of

hypervisors. Original Nova Compute software is developed to

work on cloud servers and has many complex sub-systems.

Nova-G Compute is designed to replace Nova Compute and

work on standalone FPGA SoCs with CPU or any other

customized hardware accelerators in the cloud such as the

architecture proposed in [26]. To this end, we develop a

lightweight Nova-G Compute that seamlessly works with

other OpenStack projects by correctly generating messages as

well as correctly parsing the received messages and taking

the necessary actions. Nova-G Compute does not have any

external software dependencies therefore it is meant to work

on any operating system. Nova-G Compute is developed from

scratch in Python 2.7 language in a similar structure to Nova

Compute as seen in the the block diagram that is shown in

the Figure 2.

Nova-G Compute communicates with Nova Conductor and

Neutron during VM instantiation in the same steps as ex-

plained in Section II-B. To this end, we use Rabbit Message

Queue as in standard Nova implementation. Nova-G Compute

Encoder module properly formats the messages and sends

them to the Rabbit Message Queue. Similarly the Decoder

module receives the messages from the Rabbit Message Queue

and parses them properly. Then, the required actions are taken

by Nova-G Compute according to the message contents. The

standard OpenStack messages are supported together with the

extensions of the resource database and flavor data structures

as explained in Section III-A. OpenStack communication

generally is based on RPC. Nova-G Compute core module

can respond these RPC requests and can make RPC requests

to the other OpenStack components.

OpenStack API Support: Nova-G Compute module can

use the APIs of other OpenStack components. Nova-G Com-

pute uses Glance API to retrieve the required VM images.

Moreover, it takes advantage of Neutron API to control the

OpenStack network.

Hypervisor driver: Standard Nova Compute supports pre-

defined hypervisors which work on standard server hardware

[13]. Since Nova-G Compute is designed to support non-

standard hardware, appropriate support is required for the

virtualization of this hardware with custom hypervisors. To

this end, a hypervisor driver module is developed to abstract

the Nova-G Compute implementation from the custom hy-

pervisor depending on the type of resource_g. Nova-G

Compute core gathers all the information and provides them to

the hypervisor driver. The Hypervisor driver gives commands

to the custom hypervisor for the specific hardware type to

instantiate the requested VM. Moreover, it gets the VM status

information from the custom hypervisor.

State Reporter: Nova-G Compute core collects the VM

Status information and reports the current state of the compute

node to the Nova Conductor using the State Reporter Module.

These messages are compatible with the current OpenStack

��������	

��
�������

�������

�
�����

�������
�������

���

��
�������

�����

��������

���
��

�����

�
�������

������

���!��"

�
�������

��$���
����

%&���$����

���$��

�����
�
��
�'��
��

�����
�����
!��'

�(���
��
����������
�
��$���
�
���
��

�������

Fig. 2. Nova-G logical block diagram.

implementation.

C. FPGAvisor

Nova-G Compute requires a custom hypervisor that can

communicate with hypervisor drivers depending on the

resource_g which could be any hardware component.

In this work, we select FPGA as the generalized resource

and develop a custom hypervisor that we call FPGAvisor to

demonstrate the capabilities of our proposed extensions and

Nova-G Compute. Moreover, each FPGA is not considered

as single resource. FPGAs are divided into re-configurable

regions. Individual re-configurable regions of FPGAs are

regarded as single resource_g unit. Each region can be

separately programmed by FPGAvisor.

FPGAvisor is controlled by the hypervisor driver of Nova-

G Compute. Nova-G Compute provides the IP and MAC

addresses and the image for the FPGA reconfigurable region

to FPGAvisor through the hypervisor driver. Afterwards, FP-

GAvisor programs the selected region with the FPGA image

supplied by Glance and assigns the IP and MAC addresses

for the specific reconfigurable region. FPGAvisor collects

data from the reconfigurable regions to provide Nova-G state

reporter. The data includes utilization of FPGA reconfigurable

regions, power consumption of FPGA and network traffic. This

collected data are used by other OpenStack components such

as Nova Scheduler for effective scheduling algorithms.

D. Capabilities of Nova-G Compute

Nova-G Compute takes advantage of the current OpenStack

structure and supports heterogeneous hardware resources.

Nova-G Compute provides most of the capabilities of Nova

Compute without needs for changing general OpenStack im-

plementation. Capabilities of the Nova-G Compute are sum-

marized below.

• Reports the current state of compute nodes depending on

the resource type

• Generalized hypervisor driver interface for different re-

sources

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

Controller Node
(Ubuntu 16.04)

����

Compute Node
(Ubuntu 16.04)

Compute Node
(Ubuntu 16.04)

���		
���
�
���
���	�
��
������ �
�� �
����

���� ���� ���� ���� ����

���	����
��	�
��
��	������

Virtual NAT Network

Oracle Virtual Box

Bridged Network

Physical Machine

Virtual Machines

�����	���
��
���		

Fig. 3. Test setup block diagram.

• Ability to make RPC request and respond to RPC requests

in the same way that OpenStack does

• Successful instance initialization via given VM image

• IP & MAC configuration with Neutron project

• Instance state reporting ability

• No any other software dependencies rather than Rab-

bitMQ

• Does not require Nova Compute to work with non-

standard resources

• Lightweight implementation resulting in low RAM usage

IV. EVALUATION AND RESULTS

The developed Nova-G Compute together with the exten-

sions to support different resource types is tested on a test

setup which has basic OpenStack projects such as Horizon,

Nova, Neutron and Glance. All these installed projects are

fully functional. The test set-up consists of a single physical

computer with three virtual machines to simulate the controller

node and two compute nodes. The physical computer has

Intel Core i7-7500U CPU, 16GB of RAM and Windows 10

64 bit operating system. The virtualization software to create

the nodes is selected as Oracle VM VirtualBox with Ubuntu

16.04 LTS operating system. VirtualBox provides flexibility

with VM management, has user friendly interface and more

importantly supports creating virtual NAT network for VMs.

Each virtual machine has two virtual network interfaces.

The first interface is used as management network for Open-

Stack with pre-defined virtual NAT network. The other inter-

faces are used to connect to The Internet with a network bridge

interface shown in Figure 3. Each node can communicate with

the other nodes over the virtual NAT network with a minimum

delay.

On the controller node, Keystone, Nova, Neutron and

Glance OpenStack projects are installed and configured prop-

erly to work on given setup. Standard Nova Compute is

installed on the first node where Nova-G Compute is installed

on the second node. Nova-G only depends on the Rabbit

MQ therefore Rabbit MQ is also installed separately on this

node. This set-up does not include any real heterogeneous

hardware and is dedicated only for the performance evaluation

of the extensions for the generalizations and Nova-G Compute.

Hence we modify the FPGA-visor to return with the proper

response as if the FPGA reconfigurable region is programmed

and ready.

A. Basic Functional Tests

Test 1: Verification of network interfaces: All OpenStack

communication is over the network therefore first the connec-

tivity between all nodes are tested. Round-trip times (RTT)

between vNICs that are connected to the Virtual Network,

are measured. The mean of RTT is 0.355 ms between the

controller and the compute nodes. This RTT value is used as

reference for other time measurements.

Test 2: Verification of Nova-G Compute compatibility:
The connectivity between OpenStack services and their op-

eration are tested. The OpenStack project, Horizon is used

in this test. With the help of the Horizon Module, the state

of services in OpenStack is viewed and tracked as shown in

the Figure 4. Nova-G Compute is working on the compute

node named as compute1. The original Nova Compute is

active on the compute node called compute2. Both Nova

Compute versions are identified by OpenStack system in the

same manner named nova-compute.

Horizon shows both compute1 and compute2 nodes in

Up state. Furthermore, these states are continuously updated

as Up. This test verifies that Nova-G Compute properly

operates and it is compatible with the standard OpenStack

implementation.

Fig. 4. Testing of OpenStack services with Horizon.

Test 3: Verification of Nova-G Compute VM instan-
tiation: In this test, Nova-G Compute instantiates a VM

while standard Nova Compute instantiates another VM. To

this end, the FPGAvisor communicates with the hypervisor

driver in Nova-G . Consequently, as seen in Figure 5, Open-

Stack Horizon shows that VM_Nova-G VM is working on

node compute1 which runs Nova-G Compute. In addition,

VM_Test_1 is working on node compute2 that runs the

standard Nova Compute. Hence, it is verified that Nova-G

module is capable of correctly getting VM requests of the

users and instantiating the VMs.

Test 4: Nova-G Compute communication latency: Every

100 ms, compute nodes update their status by sending a

message to the controller node. We measure an average latency

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. VM instantiation by Nova-G.

of 0.5 ms over 100 measurements between compute1 and

the controller node when Nova-G Compute updates the status.

Since the mean RTT between nodes is 0.355 ms as measured

in Test 1, we conclude that Nova-G Compute works with a

minumum overhead.

Nova-G Compute module uses get_by_uuid method of

Service objects on Nova Conductor to make RPC requests.

We measure the mean RPC request response time of Nova-

G Compute over a total of 100 different RPC requests made

in a time interval of 100ms. The results of measurements are

summarized in Table II.

TABLE II
NOVA-G COMPUTE COMMUNICATION LATENCY.

Status Updates Time (ms)
Minimum Latency 0.4
Maximum Latency 1.2
Average Latency 0.5

RPC Requests Time (ms)
Minimum Delay 9
Maximum Delay 30
Mean Delay 14

During these tests, the memory usage of Nova-G module is

measured during normal operation by Python psutil library.

Module has an average memory usage around 33.4 MB.

B. Functional Tests Using Rally

After verifying the basic functionality of Nova-G Compute,

we conduct performance tests using the benchmarking tool

Rally [27] to test the overall operation of Nova-G Compute

and compare its scalability with the standard Nova Compute.

Rally is an external tool that uses OpenStack services to test

cloud infrastructure with a standard testing environment. Rally

is used by many companies including Intel, IBM, Huawei and

Cisco to test the performance and scalability of their clouds

[28]. Here we note that, our capability of using Rally for Nova-

G Compute tests is an important indicator to show that Nova-G

Compute is well integrated to OpenStack.

Our test set-up is on a single physical machine, hence, we

test Nova Compute and Nova-G independently so that they do

not affect the performance of each other. Accordingly, in each

test one compute node is used either with Nova Compute or

Nova-G Compute. The corresponding test case block diagrams

are shown in Figure 6.

Physical Machine

C
o

n
tr

o
ll
e
r

N
o

d
e

C
o

m
p

u
te

 N
o

d
e

(N
o

v
a
-C

o
m

p
u

te
)

R
a

ll
y

 N
o

d
e

Represent OpenStack

Cloud

Physical Machine

C
o

n
tr

o
ll
e
r

N
o

d
e

C
o

m
p

u
te

 N
o

d
e

(N
o

v
a

-G
)

R
a

ll
y

 N
o

d
e

Test Case - 1

Testing Nova-Compute

Test Case - 2

Testing Nova-G

API Interface

Fig. 6. Test setup used by Rally.

Test 5: Nova-G VM instantiate latency for single re-
quests: We test the performance of Nova-G Compute in the

complete operation cycle of standard VM creation, booting

and deletions. To this end, Rally sends a VM creation request

with a determined flavor and a VM image to the OpenStack

cloud which is represented by our test set-up. Afterwards,

Rally observes the state of the VM using OpenStack API.

When the compute node finishes instantiating of a VM, Rally

sends a delete request to the controller node to terminate the

VM. Then it starts making a new VM request to the cloud.

This process continues over a defined number of iterations.

Figure 7 shows the booting and deletion of server times for

Nova-G Compute for 50 iterations.

Test 6: Scalability of VM instantiate latency comparison:
Rally is configured to make VM instantiation request to

OpenStack system in these test. Rally has a configuration

parameter for stating the number of concurrent VM requests.

For example, if the concurrent VM request parameter is set to

2, Rally keep tracks of VMs on compute nodes and maintains

2 VMs on the compute node for testing period. For this

experiment, we run 5 tests where we change the the concurrent

VM request number from 1 to 5 in each test. A total of 50

VM requests are handled in each test. All tests are conducted

both for original Nova Compute and Nova-G. Comparison

between Nova Compute and Nova-G average VM instantiation

time is shown in Figure 8. Here we note that FPGAvisor

of Nova-G Compute does not execute the actual boot up

actions. To this end, the hypervisor boot time of standard

Nova Compute is subtracted from the total VM boot time for

fair comparison. We observe that the boot time of Nova-G

Compute is less than standard Nova Compute because of its

lightweight implementation with essential components only.

We present the mean time figures normalized with the VM

instantiation time of a single request for Nova-G Compute and

standard Nova Compute respectively in Figure 9 for better

demonstration of the Nova-G Compute scalability. Here we

see that the VM booting time grows linearly with the number

of concurrent VM requests. Hence, Nova-G Compute performs

as goods as the original Nova Compute in terms of scalability.

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Nova-G Compute performance over 50 VM boot and delete iterations with Rally.

�

�

��

��

��

��

��

� � � � �

�	

��

�
�

������������������

��������	���
���
�����

�������
����� ����!����"� �����#� ����!����"�

Fig. 8. Nova Compute and Nova-G Compute VM boot times.

For each test, we repeat 50 VM instantiations. Our sample

means are within the respective percentage error of the true

mean with a confidence level of 95% as shown in Table III.

TABLE III
CONFIDENCE LEVELS FOR THE TEST RESULTS.

Concurrent VMs 1 2 3 4 5
Error (%), 6.96 5.23 6.50 4.95 4.77

�

�

�

�

�

�

� � � � �

�	

��
��

�

�$
	%�

&

������������������

�������������������	����	��
������������

�������
����� ����!����"�����
�$	%�&

�����#� ����!����"�����
�$	%�&

Fig. 9. Nova Compute and Nova-G Compute scalability.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a generalization for OpenStack

resource allocation project Nova to accommodate the new

types of resources in hardware accelerated clouds. To this end,

we extend the database structures of OpenStack by the new

types of resources such as FPGA or GPU. This extension is

at the same level with the standard resources of OpenStack

database which enables standard Nova Scheduler algorithms

to work with these new resource types. More importantly we

develop a new lightweight Nova Compute module that we

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

call Nova-G Compute that works seamlessly with the standard

OpenStack services and can work on any hardware platform

that supports Rabbit MQ thanks to its implementation that does

not have OS dependencies. We further develop an FPGAvisor

that gives access to FPGA resources to Nova-G Compute

through its generalized hypervisor driver.

Our experimental evaluations with the standard OpenStack

benchmarking tool Rally show that Nova-G correctly commu-

nicates with other OpenStack components and can boot VMs

on generalized resources without any performance degradation

with respect to standard Nova Compute. In this paper, Nova-G

Compute performance and functionality is evaluated on a test

setup with virtual machines. Currently we are implementing

Nova-G Compute for managing a real accelerated cloud sys-

tem in a laboratory environment [29]. The FPGA accelerators

are implemented on Zynq SoC platform.

ACKNOWLEDGMENT

The authors would like to thank TUBITAK and ASELSAN

for their support.

REFERENCES

[1] “Openstack user stories,” accessed: 2019-02-02. [Online]. Available:
https://www.openstack.org/user-stories/

[2] P. Cooke, J. Fowers, G. Brown, and G. Stitt, “A tradeoff analysis
of fpgas, gpus, and multicores for sliding-window applications,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 8, no. 1, p. 2, 2015.

[3] “Openstack global market revenues from 2014 and
2021,” accessed: 2019-03-21. [Online]. Available:
https://www.statista.com/statistics/498552/openstack-market-size/

[4] “What is openstack?” accessed: 2019-02-02. [Online]. Available:
https://www.openstack.org/software/

[5] “Openstack docs: Compute api,” accessed: 2019-02-02. [Online]. Avail-
able: https://developer.openstack.org/api-ref/compute/

[6] “Openstack docs: Keystone, the openstack identity
service,” accessed: 2019-02-02. [Online]. Available:
https://docs.openstack.org/keystone/latest/

[7] “Openstack docs: Welcome to neutron’s documen-
tation!” accessed: 2019-02-02. [Online]. Available:
https://docs.openstack.org/neutron/latest/

[8] “Openstack docs: Networking api v2.0,” accessed: 2019-02-02. [Online].
Available: https://developer.openstack.org/api-ref/network/v2/index.html

[9] “Openstack docs: Welcome to glance’s documentation!” accessed: 2019-
02-02. [Online]. Available: https://docs.openstack.org/glance/latest/

[10] “Openstack docs: Horizon: The openstack dashboard
project,” accessed: 2019-02-02. [Online]. Available:
https://docs.openstack.org/horizon/latest/

[11] S. Lima, Á. Rocha, and L. Roque, “An overview of openstack architec-
ture: a message queuing services node,” Cluster Computing, pp. 1–12,
2017.

[12] “Rabbitmq best practices,” accessed: 2019-03-22. [Online]. Available:
https://www.rabbitmq.com/

[13] “Openstack hypervisors,” accessed: 2019-02-02. [On-
line]. Available: https://docs.openstack.org/ocata/config-
reference/compute/hypervisors.html

[14] “Amazon ec2 f1 instances,” accessed: 2019-03-22. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[15] “Graphics processing unit (gpu) — google cloud,” accessed: 2019-03-
22. [Online]. Available: https://cloud.google.com/gpu/

[16] “Cloud tpus - ml accelerators for tensorflow — cloud tpu
— google cloud,” accessed: 2019-03-22. [Online]. Available:
https://cloud.google.com/tpu/

[17] “Cloud iot core — cloud iot core — google cloud,” accessed: 2019-03-
22. [Online]. Available: https://cloud.google.com/iot-core/

[18] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A
cloud-scale acceleration architecture,” in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Press, 2016, p. 7.

[19] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack,” in 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines. IEEE, 2014, pp.
109–116.

[20] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Enabling flexible network fpga clusters in a heterogeneous
cloud data center,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: ACM, 2017, pp. 237–246.

[21] “Xilinx zynq-7000 soc,” accessed: 2019-03-22. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[22] S. Crago, K. Dunn, P. Eads, L. Hochstein, D. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, and J. P. Walters, “Heterogeneous
cloud computing,” in 2011 IEEE International Conference on Cluster
Computing, Sep. 2011, pp. 378–385.

[23] L. Phan and K. Liu, “Openstack network acceleration scheme for
datacenter intelligent applications,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), July 2018, pp. 962–965.

[24] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito,
“Stack4things: a sensing-and-actuation-as-a-service framework for iot
and cloud integration,” Annals of Telecommunications, vol. 72, no. 1,
pp. 53–70, Feb 2017.

[25] “Cyborg-nova-glance interaction in compute node,”
https://docs.openstack.org/cyborg/latest/specs/rocky/approved/compute-
node.html, accessed: 2019-03-21.

[26] A. Yazar, A. Erol, and E. G. Schmidt, “Accloud (accelerated cloud):
A novel fpga-accelerated cloud archictecture,” in 2018 26th Signal
Processing and Communications Applications Conference (SIU). IEEE,
2018, pp. 1–4.

[27] “what is rally?” accessed: 2019-03-22. [Online]. Available:
https://docs.openstack.org/developer/rally/

[28] “Overview rally,” accessed: 2019-03-17. [Online]. Available:
https://rally.readthedocs.io/en/latest/overview/overview.html

[29] “A novel fpga accelerated cloud architecture,” accessed: 2019-03-22.
[Online]. Available: http://accloud.eee.metu.edu.tr/

Authorized licensed use limited to: ULAKBIM UASL - MIDDLE EAST TECHNICAL UNIVERSITY. Downloaded on February 12,2022 at 19:00:19 UTC from IEEE Xplore. Restrictions apply.

