FPGA, Git, DevOps, CI/CD

Modern yazilim gelistirme yontemlerini neden FPGA projelerine uyarlamayalim?

Alper Yazar <ayazar@alperyazar.com>
2025,v1 © CC BY-NC-SA 4.0

Bu yazimda,

* FPGA projelerini Git gibi bir versiyon kontroli ile neden takip etmemiz gerektiginden
* Bu suirecte dikkat etmemiz gereken temel noktalardan

* Yazilim dunyasindaki DevOps, CI/CD gibi kavramlardan nasil faydalanabilecegimizden
bahsedecegim.
Bu konulardaki fikirlerimi serbest, biraz da karisik, formatta anlattigim bir yazi olacak.

Hadi baglayalim!

FPGA Projeleri ve Git

2018 yilinin baslarinda ACCLOUD, Accelerated Cloud, isimli bir AR-GE projesini baslatmistik.
Yaklasik 3 yil siiren bu projenin bir¢ok asamasinda bastan sona gorev aldim. Bu projede yogun bir
FPGA kullanimi1 vardi ve bugline kadar ¢alistigim takim yapisindan farklh olarak fiziksel olarak bir
arada olmayan, ayni FPGA tasarimina farkli lokasyonlardan katki sunan kisilerden olusan bir
takim olustu. Bu durum, bana o gine kadar biraz daha deneysel takildigim Acaba FPGA
projelerini bir yazilim projesi gibi diizgiin bir sekilde Github/Gitlab gibi platformlarda nasil
tutabiliriz? baglikh arastirmalarimi ve denemelerimi hayata gecirmek icin bir firsat olusturdu.
FPGA projelerimizi, Gitlab uzerinde tutmaya basladik. Bu c¢alismada Xilinx, simdiki AMD,
firmasinin Urtnleri ve araclari kullanildi. Fakat 6nemli bir engeller vardi: Xilinx gibi FPGA
firmalarinin araclarinin cogu, Vivado gibi, Git ile konfigiirasyon takibi yapmaya ve CI/CD
surecleri ile otomatik derleme yapmaya cok da uygun degildi. Hangi dosyalar versiyon
kontroliinde olmaliydi? CI/CD siireclerinde otomatik derleme en kolay nasil yapilabilirdi?
Hem Windows, hem Linux iizerinde calisan kisiler icin uyumlu bir sistem nasil olabilirdi?

Bu yazida bahsettiklerim o yillardan beri biriken calismalara dayanmaktadir.

Kagit ustinde baktiginiz zaman, Vivado’nun 2010’1u yillarin ilk versiyonlarindan itibaren Git ile
uyumlu oldugunu soyledigini gorebilirsiniz. Fakat bunun ayag1 ne kadar yere basiyor? Bugin bir
yazilim projesini, bir framework ya da arag ile olusturdugunuz zaman size bir¢ogu bir .gitignore
dosyas1 sunuyor. Ornegin bilgisayarinizdaki Word dosyalarini, .docx, alip bodoslama git init, git
add . ve git commit ile Git versiyon kontrolu altina aldiginizda Word, Git uyumlu bir program mi
oluyor?

Vivado gibi EDA araclari, sentez/derleme sirasinda bir¢ok ara dosya uretmekte. Ginin sonunda
sizin amaciniz belki 5-6 adet VHDL/Verilog/Block Design dosyasindan bir bitstream’e gitmek. Ama

vl Alper Yazar — 2025 1/6

https://www.alperyazar.com
mailto:ayazar@alperyazar.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://accloud.eee.metu.edu.tr/about.html
https://www.alperyazar.com

araclar bu hedef bitstream dosyasini tiretirken onlarca, belki yiizlerce ara dosyalar turetebiliyor.

Bir projenin saghikli bir sekilde versiyon kontroliiniin yapilabilmesi icin Git gibi bir sistemde hangi
dosyalarin gercekten bir kaynak dosya oldugu hangilerinin ise goz ardi edilebilecegini bilmek
gerekiyor. Ornegin sentez ya da derleme sirasinda iiretilen ara dosyalarin prensip olarak versiyon
kontrol altinda olmamasi gerekiyor. Olmasinin getirecegi en 6énemli problemlerden biri git diff
gibi bir komut ile iki commit arasi farka baktiginiz zaman aslinda anlaml olmayan dosyalarin size
bir diff noise yaratacak olmasidir. Bunun disinda baska durumlar da var elbette ama yaziy1 ¢ok
uzatmak istemiyorum.

Git'te olmali _
¥ Git'te olMAmali Bitstream | &
Verilog

v/
. ‘VHDL = Vivado
Design Alper Yazar

alperyazar.com
2025

Vivado’dan ornek verecek olursak ara cikti dosyalar1 ve bitstream dosyasi da,
sasirtic1 gelebilir belki, versiyon kontrol altinda olmamali. Kaynak kodlariniz ile
beraber projenizin ayarlar1 ise (.xise ya da .xpr olmak zorunda degil, baska
alternatif yollar da olabilir) versiyon kontrolii altinda olmali.

ipucu

Bir projenin calisma dizinin en azindan diizgin bir .gitignore ile konfigiire
ONEMLI edilmeden oldugu gibi Github/Gitlab gibi platformlara push edilmesi o projenin
Git ile saghkl bir sekilde takip edildigi anlamina gelmemektedir.

Clean Build Alabilmenin Verdigi Huzur

Bir proje i¢in gerekli olan minimum set dosyay1 kullanarak hedef ciktiya yani FPGA projeleri icin
bitstream dosyasina sorunsuzca gidebiliyorsak burada aslinda clean build almis oluyoruz. Tahmin
edeceginiz gibi bu terim FPGA projelerine 6zgu bir terim degil. Fakat bu kavram bence FPGA
projeleri icin oldukca 6nemli.

FPGA iceren projeler genelde uzun soluklu projeler oluyor. Ornegin savunma sanayinde FPGA sik

2/6 Alper Yazar — 2025 vl

https://www.alperyazar.com

kullanilan bir platform. Burada bir tirtintin tasarimi bitmis, teslim edilmis olsa da uzun yillar trtine
yeni o0zellik ekleme, hata dizeltme gibi isler icin destek vermek gerekiyor. Durum bdyle olunca,
FPGA projesinin dogru saklanmasi, versiyon kontrolinin yapimasi, gerektiginde geriye donuk
analiz yapilabilmesi ve yillar sonra bile derlenebileceginden mimkin mertebe emin olunmasi
gerekiyor.

Bunun iki ayag var: Projenin diizgin saklanmasi, ilerletilmesi ve gelistirme ortaminin
saklanmasi Gelistirme ortami konusuna bagka bir yazida deginebiliriz, bu yazinin konusu agirhikh
projenin dizgin saklanmasi ile ilgili ama yine de merak ettiyseniz belki EBox, Embedded Box
projeme bakabilirsiniz.

Kendimize su soruyu sorup cevabini vermemiz gerekiyor: Ben bu projeyi 10 yil sonra da
actigimda ve bir degisiklik yapmam gerektiginde bunu sorunsuz bir sekilde yapabilecek
miyim?

Iste bu soruya “evet” diyebilmek icin projemizin ara c¢ikti dosyalarini silsek de temel kaynak
kodlardan tekrar derlenebildiginden yani clean build alabildigimizden emin olmamiz gerekiyor.

Bundan emin olmak i¢in ise projemizin surekli temel kaynak kodlarindan sorunsuzca
derleyebiliyor olmamiz gerekiyor, elbette elle yapmak zorunda degiliz otomasyon kurabiliriz. Git
(veya SVN fark etmez) gibi bir versiyon kontrol sisteminde de ara dosyalarin olmamasi gerekiyor.

Konuyu ornekler vererek derinlestirelim.

Hikaye - 1

Xilinx (AMD) Vivado’dan ornek verecek olursak, bir IP core OOC, out-of-context, gibi yontemle
sentezlendiginde Design Check Point, .dcp, uzantilh dosyalar olusuyor. Bunlar1 Vivado’nun
kullanidig1 ara ¢iktilar ve bir nevi cache dosyalar1 gibi diisiinebiliriz. Bu ve buna benzer dosyalar
oldukca fazla sayida olabiliyor ve yer kapliyorlar.

Asagida iki adet ekran goruntusu verecegim. Bu goriintiler 20-30 adet IP Core + HDL kodlar:
iceren bir projeden alindi.

MName Subtree Percent.. Perce.. = Size Itemns Files Subdirs § Last Change

p:swap' || (000 <] B340MB 4300 3303 1,001 15.06.2021 07:39:48

Bu sekilde saklandig1 zaman projemiz 600 MB tizerinde yer kaphyor, igerisinde 1000 adet klasor ve
3308 adet dosya barindiriyor. Peki bu projeyi saklamak i¢in bu kadar dosyaya ihtiya¢ var m1? Sizce
ne kadar dosyayi atabiliriz? Gelin agsagidaki ekran goruntisine bakalim.

Mame Subtree Percent... Perce.. > Size lterns Files Subdirs Last Change Attri...

[0:00 5] 27.04.2021 05:55:00

fpga E 26.04.2021 05:09:26
.git || 12,4% 5420KB 269 160 109 27.04.2021 05:1&5% H
doc I 26% 124KE 26 18 2 25.03.2021 12:40:38
. <Files> 0.2% 10,9KE 10 10 0 27.04.2021 05:55:00
wscode 0,0% 965 Bytes 2 2 0 18.02.2021 0&:3&00

Biz bu projeyi ashinda 4 MB1in altinda bir alanda ve yaklasik 120 adet dosya ile ashinda

vl Alper Yazar — 2025 3/6

https://github.com/alperyazar/ebox
https://www.alperyazar.com

saklayabiliriz! Geri kalanlarin hepsi derleme/sentez sirasinda ¢ikan ara dosyalar ve bunlar
versiyon kontroliine koymamiz uygun degil.

Elbette sunu diyebilirsiniz: Yahu li¢c bes megabyte’in hesabint mi yapacagiz? Temel motivasyonumuz
bu degil. Temel motivasyonumuz versiyon kontroliini diizgin yapmak ve yukarida da bahsettigim
“git diff " noise gibi problemlerden kacinmak.

Hikaye - 2

Simdi daha “ibretlik” bir hikayeden bahsedecegim, anlatacaklarimi yasadiginizi hayal edin. Bir
projenin yukarida gosterdigim gibi tim ara c¢iktilar1 ile, ne var ne yoksa tim dosyalar ile
saklandigin1 hayal edin. Bu dosyalarin icerisinde ¢esitli lisansh IP core’larin ciktilar: da var. Yillar
boyunca projede IP core’larin ayarlar1 degistirilmedigi icin sentez sirasinda aslinda IP core’lar
tekrar sentezlenmiyor, ara¢ tarafindan lisanslar1 kontrol edilmiyor ve var olan ara dosyalar, adeta
cache dosyalari, kullaniliyor. Bir gin IP core’larin birinin ayari degistirilmek istenince de aslinda IP
core’un lisansinin yillar once bittigi ve aslinda degisiklik yapilamadig1l anlasiliyor. Neden?
Cunku proje clean build alinarak derlenmedigi icin bu tarz problemler gézden kaciyor. Tam da
yumurta kapiya dayandig1 zaman bunu fark ediyorsunuz. Boyle bir durumda kalmak istemezsiniz
degil mi?

Sanmiyorum ki tekralanabilir bir sekilde bir projenin clean build alarak derlenebilmesinin neden
onemli oldugunu ve bunun icin temelde nelere dikkat etmemiz gerektigini biraz anlatabilmisimdir.

Gelin devam edelim.

“Headless Build”, “Scriptable Build” Gibi
Kavramlar

Sifirdan, tekrarlanabilir derleme konularindaki en onemli aracimiz otomasyon. Bu konuda
Github Actions, Gitlab Runner, Jenkins gibi sistemler yardimimiza kosuyor. Bu sayede, Git uizerinde
takip edilen kodumuzda bir degisiklik oldugu zaman ya da periyodik olarak istedigimiz siklikta
FPGA projemizi otomatik olarak hem de clean build seklinde derleyebiliyoruz. FPGA’den bagimsiz
olarak bu konular1 DevOps, CI/CD gibi anahtar kelimelerle aratabilirsiniz.

Fakat bu sistemlerin saghkh cahgabiliyor olmas: i¢in bizim FPGA projesi sentezleme/derleme
islemini dizgiin bir sekilde komut satirindan yani Linux’ta BASH, Window’ta Power Shell ya da
CMD tzerinden yapabilmemiz gerekiyor. GUI Uizerinden saga sola tiklanarak yapilan islemleri hem
otomatize etmek hem de bir kullanicimin duzgin tekralanabilir sekilde projeyi bilgisayarinda
olusturmasi ve derlemesi ¢ok zor. O ylizden burada da 6niimiize headless build ya da scriptable
build gibi kavramlar ortaya cikiyor. Headless kelimesi bir monitoér ya da GUI olmadan yapilan
anlaminda kullaniliyor.

Ozetle sizin tiim derleme siirecinizi, bitstream olusturma, soft/hard islemci varsa onun kodunu
derleyip ELF dosyasi olusturma, bitstream ile ELF’i birlestirme, MCS gibi diger formath ¢iktilar:

4/6 Alper Yazar — 2025 vl

https://www.alperyazar.com

uretme gibi scriptlenebilir hale getirmek gerekiyor. Yani adeta komut satirindan tek bir komut
yazacaksiniz, mesela make, ve Enter’a basip caymnizi iceceksiniz. Tim islemler otomatik olacak.

E peki nasil olacak?

Peki bunlar1 yapmak i¢in ne yapmamiz gerekiyor?

1 11k olarak FPGA projesinin “diizgiin” bir sekilde versiyon kontroliinde olmasi gerekiyor. Eger var
olan sisteminiz yoksa gitmeniz gereken yol Git, kesinlikle SVN ya da buna benzer eski sistemler
degil. Halihazirda bir sisteminiz varsa Git’e gecis yapmak icin arti ve eksileri degerlendirmek
gerekir. Burada defalarca vurguladigim gibi neyin versiyon kontroliinde olup olmayacagin iyi
belirlemek gerekiyor, yani .gitignore icerigi gibi disinebilirsiniz. Bu da ara¢ ve proje bazinda
arastirma yaparak ve tecriibe ederek mumkiin olabilir. Burada projelerimizde 4 numarali maddede
bahsedecegim araclar: kullanmak da fayda saglayacaktir.

2 Otomasyon en buyuk yardimcimiz. Github, Gitlab gibi sistemlerin “otomatik olarak bir gey
yaptirtma” ve bunlarin ¢iktilarini kullanma (6rnegin bitstream) altyapilar1 oldukcga iyi, bizim de
bunlar1 kullanmamiz gerekiyor. Burada da kullanacagimiz anahtar kelimelerin basinda DevOps,
CI/CD geliyor. Gitlab kullamiyorsaniz Gitlab’in, Github Actions kullaniyorsaniz Github’in otomasyon
kismini iyi anlamak gerekiyor. Bundan bagimsiz olarak Bu DevOps gibi ¢oziimler neyi ¢ozmeye
calistyor ve ben bunu FPGA islerine nasu uyarlayabilirim? diye diisinmek gerekiyor.

3 Gelistirme ortamimizi koruma altina almak gerekiyor. Ornegin kullandifimiz Vivado
versiyonunu yillar sonra da duzgun calistirabilecek miyiz? Bu, otomasyon kapsaminda Github
Actions, Gitlab Runner, Jenkins gibi ortamlarda Docker/Podman gibi altyapilarda Vivado gibi
araclar1 calistirmak icin de ¢ok anlamli. Ayni zamanda ileriye doniik ortami korumak icin de
onemli. Buna bu yazida pek deginmedik ama container teknolojilerinin iyi bir ¢6ziim olabilecegini
dustnuyorum. Kendi repomun reklamini da yapayim:

https://github.com/alperyazar/ebox
Elbette bagka ¢ozliimler de mevcut.

4 Script ya da komut satir1 tabanlh derleme sistemlerinin 6neminden bahsettik. Burada kendinizin
sifirdan bir sey gelistirmenizi, “in-house” bir build sistemi kullanmaniz1 6nermiyorum. Ozel
bir sebebiniz vardir, ekbiniz ¢ok genistir ve bunu yillar boyunca idame ederim diyorsaniz o baska.
Eklediginiz her bir bilesenin technical debt olusturdugunu unutmayin. Bir gazla kendi TCL
scriptleri ile bir seyler yapmaya calisip, 1-2 senede patatese 0 donenleri gordugim icin (mesela ben)
anlik gazla build sistemi yazmaya ¢alismayin. Ogrenmek icin kendi kendinize takilin, ona bir sey
demem. FuseSoC, HoG gibi ¢6ztumlere bakin. Eksik buluyorsaniz onlara katkida bulunun, bu isimi
gormiiyor ya deyip Kestirip atmayin.

Bu maddeleri tek tek detaylandirmak yaziy1 ¢ok uzatacagi i¢cin genel hatlari ile bahsetmek istedim.

Faydali olmasi dilegi ile...

vl Alper Yazar — 2025 5/6

https://github.com/alperyazar/ebox
https://github.com/olofk/fusesoc
https://hog.readthedocs.io/en/latest/
https://www.alperyazar.com

Alintila

@misc{yazar2025blogfpgadevopsv1,
title = {FPGA, Git, DevOps, CI/CD},
author = {Yazar, Alper},
year = {2025},
url = {https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf},

}

NOT

6/6

Bu dokimana https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf
adresinden erigebilirsiniz. Fakat dokimanin daha guncel hali yayinlanmis olabilir.
Bunun icin litfen https://www.alperyazar.com/dow/fpga-git-cicd-devops.pdf adresini
ziyaret ediniz. Eger bu dokiman glincel ise bu dokiimani, degilse daha gtincel bir
surumunt bulabilirsiniz. Bu dokimanin sirimi vl olup 2025 tarihinde

yayinlanmagtir.

Alper Yazar — 2025

vl

https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf
https://www.alperyazar.com/dow/fpga-git-cicd-devops.pdf
https://www.alperyazar.com

	FPGA, Git, DevOps, CI/CD
	FPGA Projeleri ve Git
	Clean Build Alabilmenin Verdiği Huzur
	Hikaye - 1
	Hikaye - 2
	“Headless Build”, “Scriptable Build” Gibi Kavramlar
	E peki nasıl olacak?
	Alıntıla

