
FPGA, Git, DevOps, CI/CD
Modern yazılım geliştirme yöntemlerini neden FPGA projelerine uyarlamayalım?

Alper Yazar <ayazar@alperyazar.com>
2025, v1 © CC BY-NC-SA 4.0

Bu yazımda,

• FPGA projelerini Git gibi bir versiyon kontrolü ile neden takip etmemiz gerektiğinden

• Bu süreçte dikkat etmemiz gereken temel noktalardan

• Yazılım dünyasındaki DevOps, CI/CD gibi kavramlardan nasıl faydalanabileceğimizden

bahsedeceğim.

Bu konulardaki fikirlerimi serbest, biraz da karışık, formatta anlattığım bir yazı olacak.

Hadi başlayalım!

FPGA Projeleri ve Git
2018 yılının başlarında ACCLOUD, Accelerated Cloud, isimli bir AR-GE projesini başlatmıştık.
Yaklaşık 3 yıl süren bu projenin birçok aşamasında baştan sona görev aldım. Bu projede yoğun bir
FPGA kullanımı vardı ve bugüne kadar çalıştığım takım yapısından farklı olarak fiziksel olarak bir
arada olmayan, aynı FPGA tasarımına farklı lokasyonlardan katkı sunan kişilerden oluşan bir
takım oluştu. Bu durum, bana o güne kadar biraz daha deneysel takıldığım Acaba FPGA
projelerini bir yazılım projesi gibi düzgün bir şekilde Github/Gitlab gibi platformlarda nasıl
tutabiliriz? başlıklı araştırmalarımı ve denemelerimi hayata geçirmek için bir fırsat oluşturdu.
FPGA projelerimizi, Gitlab üzerinde tutmaya başladık. Bu çalışmada Xilinx, şimdiki AMD,
firmasının ürünleri ve araçları kullanıldı. Fakat önemli bir engeller vardı: Xilinx gibi FPGA
firmalarının araçlarının çoğu, Vivado gibi, Git ile konfigürasyon takibi yapmaya ve CI/CD
süreçleri ile otomatik derleme yapmaya çok da uygun değildi. Hangi dosyalar versiyon
kontrolünde olmalıydı? CI/CD süreçlerinde otomatik derleme en kolay nasıl yapılabilirdi?
Hem Windows, hem Linux üzerinde çalışan kişiler için uyumlu bir sistem nasıl olabilirdi?

Bu yazıda bahsettiklerim o yıllardan beri biriken çalışmalara dayanmaktadır.

Kağıt üstünde baktığınız zaman, Vivado’nun 2010’lu yılların ilk versiyonlarından itibaren Git ile
uyumlu olduğunu söylediğini görebilirsiniz. Fakat bunun ayağı ne kadar yere basıyor? Bugün bir
yazılım projesini, bir framework ya da araç ile oluşturduğunuz zaman size birçoğu bir .gitignore
dosyası sunuyor. Örneğin bilgisayarınızdaki Word dosyalarını, .docx, alıp bodoslama git init, git
add . ve git commit ile Git versiyon kontrolü altına aldığınızda Word, Git uyumlu bir program mı
oluyor?

Vivado gibi EDA araçları, sentez/derleme sırasında birçok ara dosya üretmekte. Günün sonunda
sizin amacınız belki 5-6 adet VHDL/Verilog/Block Design dosyasından bir bitstream’e gitmek. Ama

v1 Alper Yazar — 2025 1 / 6

https://www.alperyazar.com
mailto:ayazar@alperyazar.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://accloud.eee.metu.edu.tr/about.html
https://www.alperyazar.com


araçlar bu hedef bitstream dosyasını üretirken onlarca, belki yüzlerce ara dosyalar üretebiliyor.

Bir projenin sağlıklı bir şekilde versiyon kontrolünün yapılabilmesi için Git gibi bir sistemde hangi
dosyaların gerçekten bir kaynak dosya olduğu hangilerinin ise göz ardı edilebileceğini bilmek
gerekiyor. Örneğin sentez ya da derleme sırasında üretilen ara dosyaların prensip olarak versiyon
kontrol altında olmaması gerekiyor. Olmasının getireceği en önemli problemlerden biri git diff
gibi bir komut ile iki commit arası farka baktığınız zaman aslında anlamlı olmayan dosyaların size
bir diff noise yaratacak olmasıdır. Bunun dışında başka durumlar da var elbette ama yazıyı çok
uzatmak istemiyorum.

İPUCU

Vivado’dan örnek verecek olursak ara çıktı dosyaları ve bitstream dosyası da,
şaşırtıcı gelebilir belki, versiyon kontrol altında olmamalı. Kaynak kodlarınız ile
beraber projenizin ayarları ise (.xise ya da .xpr olmak zorunda değil, başka
alternatif yollar da olabilir) versiyon kontrolü altında olmalı.

ÖNEMLI
Bir projenin çalışma dizinin en azından düzgün bir .gitignore ile konfigüre
edilmeden olduğu gibi Github/Gitlab gibi platformlara push edilmesi o projenin
Git ile sağlıklı bir şekilde takip edildiği anlamına gelmemektedir.

Clean Build Alabilmenin Verdiği Huzur
Bir proje için gerekli olan minimum set dosyayı kullanarak hedef çıktıya yani FPGA projeleri için
bitstream dosyasına sorunsuzca gidebiliyorsak burada aslında clean build almış oluyoruz. Tahmin
edeceğiniz gibi bu terim FPGA projelerine özgü bir terim değil. Fakat bu kavram bence FPGA
projeleri için oldukça önemli.

FPGA içeren projeler genelde uzun soluklu projeler oluyor. Örneğin savunma sanayinde FPGA sık

2 / 6 Alper Yazar — 2025 v1

https://www.alperyazar.com


kullanılan bir platform. Burada bir ürünün tasarımı bitmiş, teslim edilmiş olsa da uzun yıllar ürüne
yeni özellik ekleme, hata düzeltme gibi işler için destek vermek gerekiyor. Durum böyle olunca,
FPGA projesinin doğru saklanması, versiyon kontrolünün yapılması, gerektiğinde geriye dönük
analiz yapılabilmesi ve yıllar sonra bile derlenebileceğinden mümkün mertebe emin olunması
gerekiyor.

Bunun iki ayağı var: Projenin düzgün saklanması, ilerletilmesi ve geliştirme ortamının
saklanması Geliştirme ortamı konusuna başka bir yazıda değinebiliriz, bu yazının konusu ağırlıklı
projenin düzgün saklanması ile ilgili ama yine de merak ettiyseniz belki EBox, Embedded Box
projeme bakabilirsiniz.

Kendimize şu soruyu sorup cevabını vermemiz gerekiyor: Ben bu projeyi 10 yıl sonra da
açtığımda ve bir değişiklik yapmam gerektiğinde bunu sorunsuz bir şekilde yapabilecek
miyim?

İşte bu soruya “evet” diyebilmek için projemizin ara çıktı dosyalarını silsek de temel kaynak
kodlardan tekrar derlenebildiğinden yani clean build alabildiğimizden emin olmamız gerekiyor.

Bundan emin olmak için ise projemizin sürekli temel kaynak kodlarından sorunsuzca
derleyebiliyor olmamız gerekiyor, elbette elle yapmak zorunda değiliz otomasyon kurabiliriz. Git
(veya SVN fark etmez) gibi bir versiyon kontrol sisteminde de ara dosyaların olmaması gerekiyor.

Konuyu örnekler vererek derinleştirelim.

Hikaye - 1
Xilinx (AMD) Vivado’dan örnek verecek olursak, bir IP core OOC, out-of-context, gibi yöntemle
sentezlendiğinde Design Check Point, .dcp, uzantılı dosyalar oluşuyor. Bunları Vivado’nun
kullanıdığı ara çıktılar ve bir nevi cache dosyaları gibi düşünebiliriz. Bu ve buna benzer dosyalar
oldukça fazla sayıda olabiliyor ve yer kaplıyorlar.

Aşağıda iki adet ekran görüntüsü vereceğim. Bu görüntüler 20-30 adet IP Core + HDL kodları
içeren bir projeden alındı.

Bu şekilde saklandığı zaman projemiz 600 MB üzerinde yer kaplıyor, içerisinde 1000 adet klasör ve
3308 adet dosya barındırıyor. Peki bu projeyi saklamak için bu kadar dosyaya ihtiyaç var mı? Sizce
ne kadar dosyayı atabiliriz? Gelin aşağıdaki ekran görüntüsüne bakalım.

Biz bu projeyi aslında 4 MB’ın altında bir alanda ve yaklaşık 120 adet dosya ile aslında

v1 Alper Yazar — 2025 3 / 6

https://github.com/alperyazar/ebox
https://www.alperyazar.com


saklayabiliriz! Geri kalanların hepsi derleme/sentez sırasında çıkan ara dosyalar ve bunları
versiyon kontrolüne koymamız uygun değil.

Elbette şunu diyebilirsiniz: Yahu üç beş megabyte’ın hesabını mı yapacağız? Temel motivasyonumuz
bu değil. Temel motivasyonumuz versiyon kontrolünü düzgün yapmak ve yukarıda da bahsettiğim
`git diff` noise gibi problemlerden kaçınmak.

Hikaye - 2
Şimdi daha “ibretlik” bir hikayeden bahsedeceğim, anlatacaklarımı yaşadığınızı hayal edin. Bir
projenin yukarıda gösterdiğim gibi tüm ara çıktıları ile, ne var ne yoksa tüm dosyaları ile
saklandığını hayal edin. Bu dosyaların içerisinde çeşitli lisanslı IP core’ların çıktıları da var. Yıllar
boyunca projede IP core’ların ayarları değiştirilmediği için sentez sırasında aslında IP core’lar
tekrar sentezlenmiyor, araç tarafından lisansları kontrol edilmiyor ve var olan ara dosyalar, adeta
cache dosyaları, kullanılıyor. Bir gün IP core’ların birinin ayarı değiştirilmek istenince de aslında IP
core’un lisansının yıllar önce bittiği ve aslında değişiklik yapılamadığı anlaşılıyor. Neden?
Çünkü proje clean build alınarak derlenmediği için bu tarz problemler gözden kaçıyor. Tam da
yumurta kapıya dayandığı zaman bunu fark ediyorsunuz. Böyle bir durumda kalmak istemezsiniz
değil mi?

Sanıyorum ki tekralanabilir bir şekilde bir projenin clean build alarak derlenebilmesinin neden
önemli olduğunu ve bunun için temelde nelere dikkat etmemiz gerektiğini biraz anlatabilmişimdir.

Gelin devam edelim.

“Headless Build”, “Scriptable Build” Gibi
Kavramlar
Sıfırdan, tekrarlanabilir derleme konularındaki en önemli aracımız otomasyon. Bu konuda
Github Actions, Gitlab Runner, Jenkins gibi sistemler yardımımıza koşuyor. Bu sayede, Git üzerinde
takip edilen kodumuzda bir değişiklik olduğu zaman ya da periyodik olarak istediğimiz sıklıkta
FPGA projemizi otomatik olarak hem de clean build şeklinde derleyebiliyoruz. FPGA’den bağımsız
olarak bu konuları DevOps, CI/CD gibi anahtar kelimelerle aratabilirsiniz.

Fakat bu sistemlerin sağlıklı çalışabiliyor olması için bizim FPGA projesi sentezleme/derleme
işlemini düzgün bir şekilde komut satırından yani Linux’ta BASH, Window’ta Power Shell ya da
CMD üzerinden yapabilmemiz gerekiyor. GUI üzerinden sağa sola tıklanarak yapılan işlemleri hem
otomatize etmek hem de bir kullanıcının düzgün tekralanabilir şekilde projeyi bilgisayarında
oluşturması ve derlemesi çok zor. O yüzden burada da önümüze headless build ya da scriptable
build gibi kavramlar ortaya çıkıyor. Headless kelimesi bir monitör ya da GUI olmadan yapılan
anlamında kullanılıyor.

Özetle sizin tüm derleme sürecinizi, bitstream oluşturma, soft/hard işlemci varsa onun kodunu
derleyip ELF dosyası oluşturma, bitstream ile ELF’i birleştirme, MCS gibi diğer formatlı çıktıları

4 / 6 Alper Yazar — 2025 v1

https://www.alperyazar.com


üretme gibi scriptlenebilir hale getirmek gerekiyor. Yani adeta komut satırından tek bir komut
yazacaksınız, mesela make, ve Enter’a basıp çayınızı içeceksiniz. Tüm işlemler otomatik olacak.

E peki nasıl olacak?
Peki bunları yapmak için ne yapmamız gerekiyor?

1 İlk olarak FPGA projesinin “düzgün” bir şekilde versiyon kontrolünde olması gerekiyor. Eğer var
olan sisteminiz yoksa gitmeniz gereken yol Git, kesinlikle SVN ya da buna benzer eski sistemler
değil. Halihazırda bir sisteminiz varsa Git’e geçiş yapmak için artı ve eksileri değerlendirmek
gerekir. Burada defalarca vurguladığım gibi neyin versiyon kontrolünde olup olmayacağını iyi
belirlemek gerekiyor, yani .gitignore içeriği gibi düşünebilirsiniz. Bu da araç ve proje bazında
araştırma yaparak ve tecrübe ederek mümkün olabilir. Burada projelerimizde 4 numaralı maddede
bahsedeceğim araçları kullanmak da fayda sağlayacaktır.

2 Otomasyon en büyük yardımcımız. Github, Gitlab gibi sistemlerin “otomatik olarak bir şey
yaptırtma” ve bunların çıktılarını kullanma (örneğin bitstream) altyapıları oldukça iyi, bizim de
bunları kullanmamız gerekiyor. Burada da kullanacağımız anahtar kelimelerin başında DevOps,
CI/CD geliyor. Gitlab kullanıyorsanız Gitlab’ın, Github Actions kullanıyorsanız Github’ın otomasyon
kısmını iyi anlamak gerekiyor. Bundan bağımsız olarak Bu DevOps gibi çözümler neyi çözmeye
çalışıyor ve ben bunu FPGA işlerine nasıl uyarlayabilirim? diye düşünmek gerekiyor.

3 Geliştirme ortamımızı koruma altına almak gerekiyor. Örneğin kullandığımız Vivado
versiyonunu yıllar sonra da düzgün çalıştırabilecek miyiz? Bu, otomasyon kapsamında Github
Actions, Gitlab Runner, Jenkins gibi ortamlarda Docker/Podman gibi altyapılarda Vivado gibi
araçları çalıştırmak için de çok anlamlı. Aynı zamanda ileriye dönük ortamı korumak için de
önemli. Buna bu yazıda pek değinmedik ama container teknolojilerinin iyi bir çözüm olabileceğini
düşünüyorum. Kendi repomun reklamını da yapayım:

https://github.com/alperyazar/ebox

Elbette başka çözümler de mevcut.

4 Script ya da komut satırı tabanlı derleme sistemlerinin öneminden bahsettik. Burada kendinizin
sıfırdan bir şey geliştirmenizi, “in-house” bir build sistemi kullanmanızı önermiyorum. Özel
bir sebebiniz vardır, ekbiniz çok geniştir ve bunu yıllar boyunca idame ederim diyorsanız o başka.
Eklediğiniz her bir bileşenin technical debt oluşturduğunu unutmayın. Bir gazla kendi TCL
scriptleri ile bir şeyler yapmaya çalışıp, 1-2 senede patatese ᾕ� dönenleri gördüğüm için (mesela ben)
anlık gazla build sistemi yazmaya çalışmayın. Öğrenmek için kendi kendinize takılın, ona bir şey
demem. FuseSoC, HoG gibi çözümlere bakın. Eksik buluyorsanız onlara katkıda bulunun, bu işimi
görmüyor ya deyip kestirip atmayın.

Bu maddeleri tek tek detaylandırmak yazıyı çok uzatacağı için genel hatları ile bahsetmek istedim.

Faydalı olması dileği ile…

v1 Alper Yazar — 2025 5 / 6

https://github.com/alperyazar/ebox
https://github.com/olofk/fusesoc
https://hog.readthedocs.io/en/latest/
https://www.alperyazar.com


Alıntıla

@misc{yazar2025blogfpgadevopsv1,
  title = {FPGA, Git, DevOps, CI/CD},
  author = {Yazar, Alper},
  year = {2025},
  url = {https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf},
}

NOT

Bu dokümana https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf
adresinden erişebilirsiniz. Fakat dokümanın daha güncel hali yayınlanmış olabilir.
Bunun için lütfen https://www.alperyazar.com/dow/fpga-git-cicd-devops.pdf adresini
ziyaret ediniz. Eğer bu doküman güncel ise bu dokümanı, değilse daha güncel bir
sürümünü bulabilirsiniz. Bu dokümanın sürümü v1 olup 2025 tarihinde
yayınlanmıştır.

6 / 6 Alper Yazar — 2025 v1

https://www.alperyazar.com/dow/fpga-git-cicd-devops-v1.pdf
https://www.alperyazar.com/dow/fpga-git-cicd-devops.pdf
https://www.alperyazar.com

	FPGA, Git, DevOps, CI/CD
	FPGA Projeleri ve Git
	Clean Build Alabilmenin Verdiği Huzur
	Hikaye - 1
	Hikaye - 2
	“Headless Build”, “Scriptable Build” Gibi Kavramlar
	E peki nasıl olacak?
	Alıntıla

