
MODBUS Notlarım
MODBUS haberleşme protokolü üzerine aldığım notlar

Alper Yazar <ayazar@alperyazar.com>
2024, v1 © CC BY-NC-SA 4.0

Önsöz
Bu doküman, ihtiyaç gereği MODBUS protokolü (MODBUS RTU) ile çalışmam gereken zamanlarda
ağırlıklı olarak resmi dokümanları temel alarak derlediğim notlarımı içermektedir. MODBUS
oldukça eski ve yaygın kullanılan bir protokol olduğu için hem Türkçe hem İngilizce, yazı ve video
şeklinde birçok kaynak bulmak mümkün. Bu dokümanı da ihtiyacınız varsa bulduğunuz diğer
kaynaklara katık edebilirsiniz diye paylaşıyorum.

Görüş ve önerilerinizi ayazar@alperyazar.com e-posta adresinden bana ulaştırabilirsiniz. Şimdiden
teşekkürler.

Giriş
MODBUS, özünde OSI modelinde en tepede yani application layer’da duran bir protokoldür.

1979 yılından beri hayatımızdadır.

MODBUS şu açıdan ilginç bir protokoldür: Hem TCP/IP, hem de RS232/RS422 gibi asenkron seri
kanal protokolleri üzerinde çalışabilir. MODBUS TCP/IP, adı üstünde TCP/IP üzerinde de
çalışmaktadır. MODBUS RTU ve MODBUS ASCII ise RS-485 gibi seri kanal protokolü üzerinde
çalışmaktadır. RTU, Remote Terminal Unit demektir. RTU’da iletişim binary olurken, ASCII olanda
ASCII karakterler üzerinden olmaktadır. RTU’da 0xAB göndereceksek bir byte olarak 0xAB
gönderiyoruz, ASCII olanda iki byte gidiyor, 'A' ve 'B' karakterlerinin ASCII kodları. ASCII olanı
daha verimsiz bir protokol olsa da doğrudan "yazı" olarak gönderilip, monitör edilmesi bazı işleri
kolaylaştıracaktır. MODBUS’ta pek bir verim, yüksek throughput ihtiyacı zaten yoktur.

MODBUS TCP/IP, varsayılan olarak TCP port 502’de çalışmaktadır.

MODBUS, Server/client, request/reply, master/slave şeklinde tasarlanmıştır.

Bir de MODBUS Plus protokolü vardır ve bu dokümanda yer almamaktadır.

v1 Alper Yazar — 2024 1 / 21

https://www.alperyazar.com
mailto:ayazar@alperyazar.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:ayazar@alperyazar.com
https://www.alperyazar.com

MODBUS protokolü birçok farklı katman üzerinde çalışabilmektedir. Görsel alıntıdır.
[modbusappproto]

Protokol
Bir MODBUS paketi tipik olarak şu şekildedir:

| ---------- ADU: Application Data Unit -------- |

| Adres | Function Code | Data | Error Check |

 | PDU: Protocol Data Unit |

PDU, altta kullanılan iletişim yönteminden (seri kanal, ethernet vs) yani alt katmanlardan bağımsız
olarak tanımlanmaktadır. PDU içerisinde, Function Code ve Data alanları vardır. MODBUS
paketlerinin gönderileceği fiziksel katmana göre Adres ve Error Check gibi ek alanlar PDU ya
eklenerek ADU paketi oluşturulur.

İletişim client tarafından başlatılır, ADU paketini client oluşturur. RS-485 üzerinde çalışan MODBUS
üzerinde ise RS-485 master node (hattı elektriksel olarak ilk süren) client olmakta ve diğer nodelar
ise RS485 slave ve server olmaktadır. Yani ilk paket client tarafından hatta konur, o esnada o node
RS-485 master olmaktadır.

Function Code ile yapılması istenen iş söylenir, 1 byte genişliktedir. 1-255 arası değerler alabilir. 128-
255 arası değerler exception cevaplar için ayrılmıştır ve rezervedir. 0 geçerli değildir. Özetle 1-127
arası (sınırlar dahil) Function Code değerleri geçerlidir.

Sub-function Code lar fonksiyonun ne yapacağını detaylandırmak için eklenebilir. Bazı Function

2 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Code lar, yapılacak eylemi detaylandırmak için Data kısmında Sub-function Code barındırır.

Data kısmı olmayabilir, 0 uzunlukta olabilir. PDU sadece Function Code dan oluşabilir.

Eğer her şey yolunda ise cevap paketinde Function Code aynen geri konur. Eğer hata durumu ile
karşılaşıldı ise 0x80 ile ORlanır yani Function Code un MSB biti set edilir. Bu yüzden geçerli Function
Code lar 127 ye kadar (dahil) dir.

İlk tasarlan RS485 temelli MODBUS protokolünde ADU maksimum 256 byte olarak tanımlanmıştır.
Bu protokolde, 1 byte Adres ve 2 byte CRC vardır. Bu yüzden MODBUS’taki maksimum PDU, 256-1-2 =
253’tür. 253’e TCP MODBUS için ilgili ek alanları koyarsak, bunlar da 7 byte etmektedir, TCP
MODBUS için ADU nun maksimum uzunluğu 260 byte olarak bulunur.

MODBUS PDU
MODBUS, 3 farklı PDU tipi tanımlamaktadır:

• Request PDU, mb_req_pdu

• Response PDU, mb_rsp_pdu

• Exception Response PDU, mb_excep_rsp_pdu

Request PDU
Bu PDU da 1 byte Function Code ve n byte Data vardır. Data kısmının anlamı Function Code a bağlıdır.

Response PDU
Bu da request PDU ile aynı yapıdadır.

Exception Response PDU
2 byte büyüklüğünde bir pakettir. 1 byte’lık Function Code, request PDU’da bulunan Function Code
un, 0x80 ile ORlanması ile oluşur. 1 byte’lık data kısmında ise MODBUS Exception Code vardır. Bununla
ilgili açıklamalar MODBUS dokümanının 7 MODBUS Exception Responses kısmında anlatılmıştır, 9
adet kod tanımlanmıştır. [modbusappproto] Exception paketler, bir şeyler yolunda gitmediği
zaman hata durumlarını iletmek için kullanılan paketlerdir.

Data Encoding
Bilgisayarlarımızda olduğu gibi MODBUS protokolünde de en küçük veri birimi/boyutu byte yani 8-
bittir. Peki göndereceğimiz veri bir byte’tan büyükse bu veriyi nasıl böleceğiz? MODBUS’ta Big
Endian kullanılmaktadır. 1 byte’ı aşan büyüklükler, 1 byte’lık parçalara bölünür. Kabloya (örneğin
RS-485 hatta) ilk olarak MSB konur. Örneğin 16-bit yani 2 adet 8-bit yer kaplayan 0x1234 değerini
göndereceksek önce 0x12 sonra 0x34 gönderilir.

v1 Alper Yazar — 2024 3 / 21

https://www.alperyazar.com

UYARI

RS-485 gibi protokollerde tipik olarak 1 byte içerisinde 8-bit verinin önce en düşük
biti, LSB, gönderilir. Yani MODBUS protokolü önce en yüksek anlamlı byte’ın, MSB,
gönderilmesini söylese de bu byte’ın gönderimi sırasında RS-485 üzerinde
çalışıyorsak tipik olarak önce bu byte’ın en düşük anlamlı bitini, LSB, görürüz. Bu
iki kavramı karıştırmayalım.

Data Model
MODBUS, endüstriyel uygulamalar için tasarlanmıştır, o yüzden dokümantasyonundaki bazı
terimler garip gelebilmektedir.

MODBUS dokümanlarında, protokol ile cihazın belleğindeki çeşitli değerlere erişildiği (okuma veya
yazma) düşünülmüştür. 4 farklı temel blok tanımlanmıştır. Bu 4 adet blok adeta cihazın belleğinde
durmaktadır ve bizler MODBUS üzerinden bunlara erişmekteyiz.

Elbette MODBUS gerçekleştiren cihazların "içi" böyle olmak zorunda değildir, bu bir modeldir.
Memory-mapped I/O modeline benzemektedir.

Blok Nesne Tipi R/W

Discrete Input 1-bit R

Coils 1-bit R/W

Input Registers 16-bit word R

Holding Registers 16-bit word R/W

Bellekte sanki bir bölgede Discrete Input, bir yerde Coils, bir yerde Input Registers varmış gibi
düşünebiliriz. Görsel alıntıdır. [modbusappproto]

4 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Elbette bu kısımlar overlap edebilir. Yani 16-bit genişliğindeki bir registerı hem Input Registers ile
word (16-bit) genişliğinde hem de Coils ile bitwise görebiliriz. Yani bellekteki bazı lokasyonlar
birbirinin alias ı olabilir.

Burada da tüm 4 blok alias durumdadır. Görsel alıntıdır. [modbusappproto]

Bellekteki bu alanların değerlerinin ne ifade edeceği tamamen vendor (üretici) bağımlıdır.
MODBUS’un sunduğu bu veri modelinin, uygulamaya nasıl bağlanacağı IEC-61131 gibi application
model ler ile belirlenir.

MODBUS protokollerinde bu 4 farklı türdeki hafıza, bir numara ile adreslenmektedir. MODBUS
paketlerinde, PDU içerisinde, bu adresler 0-65535 arasında olmaktadır. Fakat MODBUS data model i
denen bir modelde adres 1 den başlamaktadır. Örneğin 3 nolu Discrete Input türünden bir biti
okumak için gerekli olan MODBUS paketindeki adres değeri 2 olmalıdır, kafa karıştırıcı değil mi…

v1 Alper Yazar — 2024 5 / 21

https://www.alperyazar.com

Paket’te n yazıyorsa hafızada n+1 e erişiyoruz. Görsel alıntıdır. [modbusappproto]

Function Codes
Yukarıda 1-127 (sınırlar dahil) arasındaki Function Code ların geçerli olduğundan bahsetmiştik.

6 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Function Code ların bir kısmı rezerve, bir kısmına da önden anlamlar yüklenmiştir. Görsel alıntıdır.
[modbusappproto]

Bu aralıktaki kodların bir kısmı MODBUS tarafından PUBLIC olarak işaretlenmiş ve genel amaçlıdır.
Bir kısmı ise User Defined olarak bırakılmıştır.

MODBUS RTU
MODBUS bir seri kanal üzerinde, RS-232 veya RS-485 üzerinde implement edildiği zaman ve veri
binary olarak taşındığı zaman MODBUS RTU adını almaktadır. Binary değil de text yani metin yani
görünen/yazdırılabilir karakterler olarak taşınıyorsa da MODBUS ASCII olmaktadır. RTU’yu
anlamak için MODBUS dokümanını temel alacağız. [modbusserial]

RTU’da hattaki master node (hattı ilk süren) MODBUS client, slave node’lar (hattı ilk dinleyen)
MODBUS server olmaktadır.

Seri bir haberleşme hattı üzerinde implement edilen MODBUS RTU’da sadece 1 adet master
olmaktadır ve maksimum 247 adet slave olabilir.

• İletişim her zaman master tarafından başlatılır.

• Master’dan bir şey sorulmadan slave kendi başına gaza gelip bir mesaj atmaz.

• Slave’ler kendi arasında konuşamaz.

• Master aynı anda sadece 1 adet transaction başlatabilir.

v1 Alper Yazar — 2024 7 / 21

https://www.alperyazar.com

İki tip mode tanımlıdır. Unicast mode da master bir adet slave’e bir şey der, slave de bunun
cevabını verir. Burada transaction dediğimiz şey bu iki paketten oluşur. Her slave’in [1-247] arası
(sınırlar dahil) adresi vardır.

Broadcast mode da ise master bir isteği tüm slave’lere yollar. Burada slave’ler tarafından bir cevap
verilmez yani transaction dediğimiz şey tam da tanımlı değildir ama tanımlamak istersek tek
mesajdan oluşuyor gibi düşünebiliriz. Adres 0 gönderilen paketler broadcast paket olmaktadır
ve tüm slave’ler bu paketi almalıdır.

Adres alanı 1 byte’tan oluşmaktadır:

Adres Fonksiyon

0 Broadcast adresi

[1-247] Slave adres

[248 - 255] Rezerve

Bir adres iki adet slave’e atanamaz. Master mode’un bir adresi olmak zorunda değildir, sadece
slave node’ların adresi olması zorunludur. Slave’ler cevap verirken kendi adreslerini belirtirler.
Yani unicast giden istek ve cevaplardaki adresler aynı olmaktadır.

RTU’da paket formatı (en başta ADU diye belirttiğimiz) şöyledir:

| Adres (1 byte) | Function code (1 byte) | Data (0-252 byte) | CRC (2 byte) |

MODBUS RTU dokümanında master ve slave node’lar için state diyagramlar verilmiştir.

Master State Diagram

8 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Görsel alıntıdır. [modbusserial]

• Master açılınca Idle state’inde duruyor. Bu state’te değilse request atamıyor. Yani bir request
attıktan sonra Idle’a gelene kadar başka request atılamaz.

• Unicast mode’da bir slave adreslenerek mesaj atıldıysa master cevap beklemeye geçer. Bir
yandan da bir time-out süresi saymaya başlar. Time-out süresi implementation defined olarak
bırakılmıştır.

• Diyelim ki mesaj geldi. Başka bir slave cevap verdiyse ya da gelen pakette CRC hatası vs varsa ya
da time-out olduysa hata durumuna gidilir. Master isterse retry yapabilir.

• Broadcast mesajlarda slave’ler bir cevap dönmez. Ama master slave’lerin bunu işlemesi için
trunaround delay kadar beklemelidir. Bu bekleme sırasında yeni mesaj atamaz.

• 9600 bps için turnaround delay tipik olarak 100-200 ms yani ~96 - ~192 byte arası, time-out
süresi ise saniyeler mertebesindedir.

Slave State Diagram

Görsel alıntıdır. [modbusserial]

• Slave açılınca Idle state’inde duruyor.

• Bir paket geldiği zaman eğer gelen pakette CRC hatası gibi hatalar varsa veya master’ın attığı
paket ile ilgili slave adreslenmediyse, paket slave tarafından discard/drop edilebilir. Bu
durumda slave’in bir cevap vermesine gerek yoktur.

• Eğer pakette slave’in yapamayacağı bir şey isteniyorsa ya da paketin içeriği hatalı ise master’a
cevap dönülmelidir.

• Her şey yolunda ise master’ın istediği yapıldıktan sonra ve paket unicast ise master’a cevap
dönülmelidir.

v1 Alper Yazar — 2024 9 / 21

https://www.alperyazar.com

State diyagramında ve açıklamada net olmayan bence şöyle bir kısım var: Broadcast paketinin
içeriğinde hata varsa slave yine cevap dönmeli mi? Bence broadcast mesajında böyle bir akış
olmamalı. Birden fazla node cevap dönmeye çalışırsa ne olacak hata durumunda? Bunun cevabını
MODBUS dokümanı içerisinde yakalayabiliyoruz: [modbusserial]

It comprises also the error detected in broadcast messages even if an
exception message is not returned in this case.

Yani diyor ki broadcast durumunda hata oluşursa cevap dönülmez. Yine de açıkça state diagramda
belirtilirse daha iyi olurmuş.

Örnek Akış

Görsel alıntıdır. [modbusserial]

Yukarıdaki görselde 3 adet transaction verilmiştir.

İlk olanda, yani i-1 olanda, master bir istek atmakta, arkasından da slave cevap vermektedir.
Burada slave’in paketi aldıktan sonra işlemesi bir müddet vakit almaktadır: Request treatment.
Daha sonra slave cevap atmakta ve master’da bir süre gelen cevabı incelemektedir.

Bir sonrakinde, i olanda, master bir broadcast mesajı atmakta ve broadcast mesajlarında slave’ler
cevap vermemektedir. Fakat master Turnaround delay kadar bir süre open loop şekilde
beklemektedir. Bu süre, slave’lerin mesajı işlemesi için master’ın beklediği bir süredir.

Son i+1 isimli transaction’da slave paketi hatalı almakta, CRC hatası örneğin, ve paketi drop
etmektedir. Bu durumda slave bir cevap oluşturmaz. Master time out’a girer ve bir sonraki

10 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

transaction’a geçer.

REQUEST, REPLY, BROADCAST gibi süreler paket uzunluğuna ve baud rate’e bağlıdır. Onun dışındaki
bekleme süreleri ise slave’lere göre seçilmelidir. Ne kadar sürede mesaj işlenebiliyor vs.

Transmission Modes
Seri kanal üzerinde implement edilen MODBUS protokolü için iki adet transmission mode
tanımlanmıştır: RTU ve ASCII. RTU modu tüm cihazlar tarafından implement edilmelidir, ASCII
opsiyoneldir. İki modu implement eden cihazlarda default mode RTU olmalıdır. Mode, verinin
mesaj içerisine nasıl kodlanacağını (encoding) belirler. ASCII, text modu RTU ise binary mode
olarak düşünülebilir. Bu dokümanda sadece RTU’ya odaklanıyorum.

RTU
"Bildiğimiz" seri kanal mesajlarından oluşur.

| 1 bit start | 8 bit data (LSB önce) | 1 bit parity | 1 bit stop |

Data gönderilirken önce LSB biti hatta konur. Default olarak even parity kullanılır. Opsiyonel
olarak odd parity veya no parity de desteklenebilir. MODBUS dokümanları geniş bir destek aralığı
için no parity’nin de desteklenmesini önermektedir. Eğer parity kullanılmazsa yerine stop biti
konulmalıdır, yani 2 stop bit gönderilmelidir. Özetle 8-bit faydalı veri gönderimi için her zaman 11
bit veri gönderimi yapılmalıdır.

CRC
RTU formatını hatırlayalım:

| Adres (1 byte) | Function code (1 byte) | Data (0-252 byte) | CRC (2 byte) |

Burada CRC’nin önce LSB byte’ı sonra MSB byte’ı gönderilmelidir:

CRC Low (1 byte) | CRC High (1 byte)

şeklinde.

ÖNEMLI MODBUS data order’ı big endian iken CRC order’ı little endian olmaktadır.

Her 8-bit, byte, veride parity nin olup olmamasından bağımsız olarak paket sonunda CRC olmak
zorundadır.

CRC gözüktüğü gibi 16-bit genişliğindedir.

CRC, tüm mesaj üzerinden hesaplanır yani Adres, Function code ve Data hesaplaması CRC’ye dahil

v1 Alper Yazar — 2024 11 / 21

https://www.alperyazar.com

edilir.

MODBUS dokümanlarında CRC’nin hesaplanması detaylı olarak anlatılmaktadır. [modbusserial]
Pratikte aşağıdaki sitelerden CRC hesaplaması yapılabilir:

• https://crccalc.com/ CRC-16/MODBUS kullanılmalıdır.

• https://www.lammertbies.nl/comm/info/crc-calculation CRC-16 (MODBUS) kulanılmalıdır.

Yukarıdaki sitelere veri girerken ASCII değil HEX girdiğinizden emin olun. MODBUS
dokümanlarından devam edecek olursak elimizdeki frame içeriği 0207 den oluşuyorsa, yani adres
0x02 ve function code 0x07 ise yani data yoksa CRC, 0x1241 olarak bulunmalıdır. Fakat bu CRC hatta
konulduğu zaman hatta 0x41 ve 0x12 görülmelidir. Çünkü MODBUS protokolünde CRC’nin önce
düşük byte’ı, LSB, sonra yüksek byte’ı, MSB, gönderilmelidir. Günün sonunda hat üzerinde 02074112
görülmelidir.

Framing
RTU mesajlaşmada frame’ler (yani paketler) arasında en az 3.5 karakter boşluk bulunmalıdır.
Peki karakter süresi ne kadardır? Bir karakter 8 bit olarak mı yoksa 11 bit (1 bit start + 8 bit data
+ 1 bit parity + 1 bit stop) olarak mı alınmalıdır? Ben MODBUS dokümanında net bir tanım
göremedim. 8 bit, 11 bit, hatta 10 bit alan var (bence en alakasızı bu, en azında RTU için ASCII
modda 10 bit almak doğru olacaktır). [sortuchartime] 8 bit bence yanlış çünkü dokümantasyonda
bir yerde

Only the eight bits of data in each character…

diye bir laf geçiyor. Demek ki character 8 bit’ten fazla. 10 bit doğru değil bence, parity var. O
yüzden 11 bit olarak düşünmek mantıklı geliyor.

MODBUS RTU için 8-bit anlamlı veri içeren fakat start, stop ve parity bit ile toplam boyutu 11-
bit olan veri birimine karakter (character) diyebiliriz.

Bir frame içinde de karakterler arasında 1.5 karakter süresinden fazla boşluk olmamalı. Böyle
bir durumda o frame eksik kabul edilir ve alıcı tarafından ihmal edilmelidir.

3.5 karakterlik süre t3.5, 1.5 karakterlik süre de t1.5 olarak geçmektedir. Driver
implementasyonuna bağlı olarak timer kullanımı CPU interrupt yükünü arttırmaktadır. Baud rate
arttıkça timer interrupt sıklığını arttırmamak için MODBUS dokümanı baud rate’ten bağımsız sabit
değerler kullanılmasını önermektedir. Buna göre:

if baud rate > 19200
 t3.5 = 1750 us
 t1.5 = 750 us
else
 t3.5 = (3.5 * 11) / baud rate
 t1.5 = (1.5 * 11) / baud rate

Karakter süresinin kaç bit olacağı dediğim gibi net değildir. 19200 bps değerindeki bu sayıları

12 / 21 Alper Yazar — 2024 v1

https://crccalc.com/
https://www.lammertbies.nl/comm/info/crc-calculation
https://www.alperyazar.com

tutturmak için 11 değil 10 almak daha uygun oluyor ama 19200 bps değerinde bu sayılar tam
örtüşecek diye bir şey de yok. Örneğin bu kütüphanede de benim gibi 11 bit almışlar, benzer
şekilde Wikipedia'da da 11 bit olarak alınmış, devam edelim…

Görüldüğü gibi frame’ler arası en az 3.5 karakter süresi olmalıdır. Elbette 4.5 gibi daha büyük bir
sayı da olabilir. Görsel alıntıdır. [modbusserial]

Benzer şekilde:

Bir frame içerisinde iki karakter arasında 1.5 karakter süresinden daha fazla boşluk bulunamaz. Bu
durumda alan kişi mesajı discard etmelidir. Görsel alıntıdır. [modbusserial]

Hem master hem de slave açısından şöyle bir state diagram çizilebilir:

v1 Alper Yazar — 2024 13 / 21

https://github.com/BlackBrix/Simple-modbus-Master/blob/217cb83d943cd7194faf2c577214a8ccca37b815/SimpleModbusMaster.cpp#L417
https://en.wikipedia.org/wiki/Modbus
https://www.alperyazar.com

Görsel alıntıdır. [modbusserial]

• En az 3.5 karakter süresi boyunca, t3.5, bir iletim olmazsa hat idle olarak kabul edilir.

• Alan taraf t3.5 bittikten sonra frame’in bittiğini düşünüp işler.

• Alan taraf isterse işlem kolaylığı açısından CRC’yi beklemeden adres alanını işleyip, eğer kendisi
adreslenmediyse frame’in bitişini beklemeye başlayabilir. Devamını almasa da olur.

MODBUS dokümanının devamında RS-485/422 protokolü ile ilgili daha genel bilgiler, elektriksel
özellikler, konnektör ve LED önerileri bulunmaktadır. Bu bilgileri buraya tekrar almıyorum, çoğu
da zaten MODBUS’tan bağımsız bilgiler. Yine de dokümandan takip edilebilir. [modbusserial]

MODBUS Function Codes
Bu kısımda, MODBUS standartında belirtilen Function Code lara bakacağız.

1-127 arası function code’ların geçerli olduğundan bahsetmiştik. Bir hatırlayalım:

Function code’ların bir kısmı rezerve, bir kısmına da önden anlamlar yüklenmiştir. Görsel alıntıdır.
[modbusappproto]

Bu aralıktaki kodların bir kısmı MODBUS tarafından PUBLIC olarak işaretlenmiş ve genel
amaçlıdır. Bir kısmı ise User Defined olarak bırakılmıştır.

14 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Yukarıdaki görsel MODBUS dokümanından alınmıştır. Bazı satırların neden sarı ile highlight
edildiğini bilmiyorum. Görsel alıntıdır. [modbusappproto]

Her bir function code’un anlamı ve ne yapılacağı MODBUS dokümanında anlatılmıştır.
[modbusappproto] Bunları tekrar yazmak pek anlamlı değildir. Temel kavramları aktarmaya
çalışacağım. RTU ile ilgili bilgileri de MODBUS dokümanından alacağım. [modbusserial]

Read Coils, 0x01
MODBUS protokolünde coil 1-bit genişliğinde yazma ve okuma yapılabilen bir alan olarak
düşünülebilir. Bu komut server’dan (RTU’da slave) bu register’ları okumak için kullanılır.
MODBUS’a göre 65536 adet coil olabilmektedir. Bu komut ile okunmak istenen coillerin base adresi
ve range’i verilir. Ardışıl olan coiller tek bir komut ile okunabilir. Bir komut ile maksimum 2000
adet coil okunabilir. Cevap paketinde de her coil 1 bit ile ifade edilir.

İstek:

• Function code: 0x01

• Data, ilk 2 byte: 0x0000-0xFFFFF, coil başlangıç adresi yani okunacak en düşük adresli coil adresi.

• Data, sonraki 2 byte: 1-2000, kaç adet coil’in okunacağı.

İstek paketi toplam 5 byte’tan oluşmaktadır. MODBUS bellek modelinde paketlerdeki adresleme ile
bellek adresleri arasında 1 fark olduğundan bahsetmiştik. Yani cihaz belleğinde coil adresleri 1-
65536 arasında iken haberleşme sırasında coiller 0-65535 ile adreslenir. Bu tüm veri modelleri için

v1 Alper Yazar — 2024 15 / 21

https://www.alperyazar.com

geçerlidir.

Cevap:

• Function code: 0x01

• Data, ilk 1 byte: Arkada kaç byte’lık data olacağı, N diyelim

• Data, sonraki N byte: Coil status bilgileri

Eğer 16 adet coil status okunmak istendiyse N 2 olacaktır fakat 17 adet istendiyse 3 olacaktır.
Sayının 8’e bölümünün üste yuvarlanması ile N sayısı elde edilir.

Diyelim ki 20-39 adreslerindeki coilleri okumak istiyoruz. MODBUS RTU üzerinde aşağıdaki gibi
olacaktır. MODBUS’ın byte order’nın big endian, RTU’daki CRC’nin ise little endian olduğunu
hatırlayalım.

İstek:

| Adres | 0x01 | 0x00 | 0x13 | 0x00 | 0x14| CRC-low | CRC-high |

Başlangıç adresimiz 20 fakat haberleşmede 1 eksiğini alıyoruz, 19 yani 0x13 oluyor. Okumak
istediğimiz aralık ise 20 = 39 - 20 + 1 adet coil içeriyor, yani 0x14.

20/8 = 2.5, bunu 3’e yuvarlıyoruz yani 3 byte cevap vereceğiz.

Cevap:

| Adres | 0x01 | 0x03 | Coil 27-20 | Coil 35-28 | Coil 39-36 | CRC-l | CRC-h |

olacaktır.

Coil status kısmı, base adres ile başlar yani en düşük adresli coil. İlk byte’ın LSB biti en düşük
adresli coil’in durumunu içermelidir. 1, ON; 0, OFF demektir. Örneğin slave bu byte’ın değerini 1010
1101 olarak gönderirse:

Bit: 1 0 1 0 1 1 0 1
Coil: 27 26 25 24 23 22 21 20

olarak anlamdırırız. Fakat unutmayın ki MODBUS RTU’da data’nın önce LSB biti konur. Yani
osiloskop ile bakıyorsak hatta aslında 1011 0101 görürüz.

Adresleme bu şekilde artarak devam eder. En son byte’ta boşluklar olabilir, örneğin bu örnekte 4
bit padding yapılması gerekmektedir. Bunlar 0 ile pad edilmelidir. Son byte:

Bit: 0 0 0 0 1 1 1 1
Coil: -- -- -- -- 39 38 37 36

16 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

gibi…

Bir de hata durumlarına bakalım. Dokümanda gayet güzel gösterilmiş:

Görsel alıntıdır. [modbusappproto]

Görebileceğimiz gibi farklı hata durumlarında farklı hatalar dönmelidir. Hata durumlarında 1 byte
function code, istek function code un 0x80 ile ORlanması ile oluşturulur. Daha sonra 1 byte data
olarak ExceptionCode konur.

Diyelim ki master, olmayan bir adresteki coil’i okumak istedi. Bu durumda da 02 nolu exception
dönüyorsak

Cevap:

| Adres | 0x81 | 0x02 | CRC-l | CRC-h |

v1 Alper Yazar — 2024 17 / 21

https://www.alperyazar.com

olacaktır.

Yazının geri kanalındaki komutların çalışma biçimi bu komuta benzediği için daha yüzeysel
anlatacağım.

Read Discrete Inputs, 0x02
Read coils, 0x01, ile aynı çalışmaktadır.

Read Holding Registers, 0x03
Coil ve discrete input okumak ile benzerdir özünde. Holding Registers, MODBUS standartında 16-
bit olarak tanımlanmıştır. Buna göre protokolde değişiklikler olmaktadır. Farklı olarak tek seferde
en fazla 125 adet register okunabilir, her biri 16-bit. Bir register 2 byte şeklinde gönderilir.
MODBUS’a uygun olacak şekilde ilk olarak MSB byte hatta konur, yani big endian order kullanılır.

Read Input Registers, 0x04
Read Holding Registers, 0x03, ile aynı çalışmaktadır.

Write Single Coil, 0x05
Tek 1-bit lik coil register’ın değerini değiştirmek için kullanılır.

RTU İstek:

| Adres | 0x05 | 0x0000 - 0xFFFF | 0x0000 or 0xFF00 | CRC-l | CRC-h |

CRC ve adres hariç 5 byte’lık bir pakettir. Function code sonrası ilk 2 byte yazma yapılacak regsiter
adresini belirtir. Önceki paketlerde olduğu gibi 1 offset olayı burada da vardır. İlgili register’ı ON
yapmak için 0xFF00, OFF yapmak için 0x0000 yazılır. Diğer değerler geçersizdir.

Write Single Register, 0x06
Tek bir holding register’a (16-bit) yazmak için kullanılır. Write Single Coil, 0x05, e oldukça benzer.
Data kısmı sabit iki adet 16-bit veri yerine yazılması istenen 16-bit veridir.

Read Exception Status, 0x07
Sadece seri kanal implementasyonlarında vardır. 8-bit bir değer okunuyor ama ne işe yarıyor
anlamadım.

18 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Diagnostics, 0x08
Sadece seri kanal implementasyonlarında vardır. Slave cihazdan (server) çeşitli sorgular ve test
yapmaya yarar. 2 byte’lık sub-function code’lar ile istek şekillendirilir. Detayları MODBUS
dokümanında vardır.

• Loopback test

• Bir slave cihazı susturmak

• İletişimi resetlemek

• Çeşitli istatistik register’larını okumak için

kullanılır.

Get Comm Event Counter, 0x0B ve Get Comm Event
Log, 0x0C
Sadece seri kanal implementasyonlarında vardır. Detayları dokümanlardan okunabilir. Özünde
seri kanal ile çeşitli istatistikleri döner.

Write Multiple Coils, 0x0F
Birden fazla 1-bit genişliğinde olan coil’e yazmaya yarar. Write Single Coil, 0x05 den farkı birden
fazla, ardışıl 1-bit register’a yazma imkanı sunmasıdır. Tek seferde en fazla 1968 adet register’a
yazma yapılabilir.

Write Multiple Registers, 0x10
Ardışıl 16-bit genişliğindeki holding register’lara yazma yapmayı sağlar. Write Single Register, 0x06
komutundan farklı olarak birden fazla register’a tek seferde yazmaya yarar. Bu komut ile tek
seferde 123 adet register’a kadar yazma yapılabilir.

Report Server ID, 0x11
Sadece seri kanal implementasyonlarında vardır. Cihaza özgü bir cevabı vardır.

Read File Record, 0x14
MODBUS’ta file denen bir kavram vardır. Fiziksel olarak tam neye karşılık geldiği bence net değil,
üreticiye bırakılmış. Örneğin data logger gibi bir cihazda file, capture edilen bir waveform’u
gösterebilir. Ya da uzaktan yazılımını güncelleyeceğimiz bir cihazın flash’ında duran yazılımı bir
file gibi kurgulayabiliriz. Bu kısım, slave cihaz üreticisine bağlı.

Kurgusual olarak her bir dosyanın bir numarası vardır, bu numara aralığı 1-65535 arasındadır. Bu
numara, dosya ismi gibidir. Her bir dosya record adı verilen 2-byte genişliğindeki parçalara
bölünmüştür. Her bir dosya da en fazla (?), 10000 adet record bulunabilir. Böylece bir dosya en

v1 Alper Yazar — 2024 19 / 21

https://www.alperyazar.com

fazla 20000 = 2 * 10000 byte, ~19.53 KB boyutunda olabilir.

Bu komut ile istenirse birden fazla file’dan ardışıl olmak üzere birden fazla uzunlukta record
okunabilir. Detayları dokümanında vardır. Protokol açısında maksimum paket boyutunu
geçmememiz lazım.

Write File Record, 0x15
Okuma komutuna benzer, paket formatı olarak da. Bu da yazma yapmak için kullanılır.

Mask Write Register, 0x16
Bir adet 16-bit genişliğindeki holding register’a doğrudan veri yazmadan, bit bit bazı bitleri AND ve
OR işlemine tutarak, yani maskeleyerek, set veya reset etmeye yarar. Yani diyelim ki 10.bit’i set
etmek, aynı anda 4.bit’i reset etmek için bunu kullanabiliriz.

Read/Write Multiple registers, 0x17
Tek bir transaction ile birden fazla 16-bit holding register’ı, ardışıl olmak şartı ile, okuma yapmaya
ve yazma yapmaya (aynı adres aralığında olmak zorunda değil okuma ile yazma fakat ikisi de
kendi içinde ardışıl olmalı) yarar. MODBUS standardına göre önce yazma sonra okuma yapılır.

Read FIFO Queue, 0x18
Anladığım kadarıyla MODBUS’ta genişliği 16-bit yani bir holding register genişliğinde olan bir FIFO
data modelinden bahsediliyor. Bu FIFO teorik olarak 65535 + 31 derinliğinde. Bu komut ile FIFO’nu
herhangi bir offsetine gidip maksimum 31 adet veri okuyabiliyoruz. Bu komut ile FIFO’dan okuma
yapıldığı zaman FIFO içeriği silinmemektedir.

Encapsulated Interface Transport, 0x2B
Bu komut ile MODBUS’a tünelleme yaptırılabilir. SSH Tünel gibi MODBUS üzerinden başka bir
protokolün taşınması sağlanabilir. MODBUS dokümanlarında CANOpen mesajlarının taşınması
anlatılmıştır. Tünelleme ihtiyacı olunca dönüp bakılabilir.

MODBUS Exception Responses
MODBUS dokümanlarında çeşitli exception’lar tanımlanmıştır. Bunlar protokollerin içinde de
anlatılmaktadır. Diyelim ki desteklenmeyen komut attık, yanlış parametre attık, bu durumda
exception response gelecektir. Detayları dokümanda anlatılmıştır. Bu durumda daha önceden
bahsettiğimiz gibi function code, 0x80 ile ORlanmaktadır.

20 / 21 Alper Yazar — 2024 v1

https://www.alperyazar.com

Alıntıla

@misc{yazar2024blogmodbusv1,
 title = {MODBUS Notlarım},
 author = {Yazar, Alper},
 year = {2024},
 url = {https://www.alperyazar.com/dow/modbus-v1.pdf},
}

NOT

Bu dokümana https://www.alperyazar.com/dow/modbus-v1.pdf adresinden
erişebilirsiniz. Fakat dokümanın daha güncel hali yayınlanmış olabilir. Bunun için
lütfen https://www.alperyazar.com/dow/modbus.pdf adresini ziyaret ediniz. Eğer bu
doküman güncel ise bu dokümanı, değilse daha güncel bir sürümünü bulabilirsiniz.
Bu dokümanın sürümü v1 olup 2024 tarihinde yayınlanmıştır.

Teşekkürler
Bu içeriğin hazırlanmasında katkılarından dolayı Hamza Murat Yılmaz'a teşekkür ederim.

Kaynaklar
▪ [modbusappproto] MODBUS Application Protocol Sepcification V1.1b3 Link1 Link2

▪ [modbusserial] MODBUS over Serial Line Specification & Implementation Guide V1.02 Link1
Link2

▪ MODBUS (Wikipedia)

▪ [sortuchartime] Calculating modbus RTU 3.5 character time

v1 Alper Yazar — 2024 21 / 21

https://www.alperyazar.com/dow/modbus-v1.pdf
https://www.alperyazar.com/dow/modbus.pdf
https://www.linkedin.com/in/hamza-murat-y%C4%B1lmaz-2037891a2/
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://www.afs.enea.it/project/protosphera/Proto-Sphera_Full_Documents/mpdocs/docs_EEI/Modbus_Application_Protocol_V1_1b3.pdf
https://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://cdn.linak.com/-/media/files/ic-and-bus-actuators/modbus-over-serial-line-v1-02.pdf
https://en.wikipedia.org/wiki/Modbus
https://stackoverflow.com/questions/20740012/calculating-modbus-rtu-3-5-character-time
https://www.alperyazar.com

	MODBUS Notlarım
	Önsöz
	Giriş
	Protokol
	MODBUS PDU
	Data Encoding
	Data Model
	Function Codes
	MODBUS RTU
	MODBUS Function Codes
	Alıntıla
	Teşekkürler
	Kaynaklar

