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ABSTRACT

APPLICATION OF F-TEST METHOD ON MODEL ORDER SELECTION
AND RELATED PROBLEMS

Yazar, Alper

M.S., Department of Electrical and Electronics Eng.

Supervisor : Assoc. Prof. Dr. Ça§atay Candan

August 2015, 140 pages

Signal modeling is one of the important topics of signal processing area. The in-

put signal should be modeled with a suitable mathematical model �rst. In statis-

tics related disciplines, there are information theory based criteria for model

order selection topic. In this thesis work, F-test based methods are proposed

on model order selection and related problems. F-test is used in statistics re-

lated disciplines. However, it is not so widely used in signal processing related

problems. Solution approaches for signal processing related problems based on

known F-test are contributions of this thesis work. This work is focused on

signals in linear spaces.

Fundamentally, F-test is a test of signi�cance. It is used to test whether a signal

model is su�cient to model the signal of interest or higher order models are

needed. This test is made by using two nested models with di�erent orders.

RSS (Residual Sum of Squares) values are calculated for each model and they
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are compared using F-test. According to the test result, it is determined that

whether the lower order model is almost good as the higher order model or the

higher order model improves the accuracy signi�cantly. The proposed method

is basically an iterative application of F-test. It selects the suitable model order

by applying F-test many times.

In this work, some problems related with model order selection topic are solved

using F-test based approaches. An analysis window length selection method

for zero-crossing point estimation problem using line �t is proposed as the �rst

example. Secondly, a method is proposed for the segmentation of multi tone

signals. Similar approach is given as the third example for segmentation of

FM signals. As the fourth example, a number of pole selection algorithm is

proposed for all-pole signal modeling using Prony's method. Lastly, a segmen-

tation method for damped sinusoidal signals with Prony's method is proposed.

Simulation results are provided for each �ve problems.

Keywords: Signal Modeling, Linear Models, Parameter Estimation, Model Or-

der Selection, Model Validity, Analysis Window Length Selection, Test of Sig-

ni�cance, F-test, Nested Models, Zero-Crossing Estimation, Segmentation.
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ÖZ

MODEL DERECES� SEÇ�M� VE �LG�L� PROBLEMLER �Ç�N F-TEST�
YÖNTEM�N�N UYGULANMASI

Yazar, Alper

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Ça§atay Candan

A§ustos 2015 , 140 sayfa

�³aret modellemesi, i³aret i³leme alan�n�n en önemli konular�ndan biridir. Giri³

i³areti ilk olarak uygun bir matematiksel model ile gösterilmelidir. �statistik ile

ilgili alanlarda, model derecesi seçimi ile ilgili bilgi kuram� tabanl� çe³itli kriterler

bulunmaktad�r. Bu tez çal�³mas�nda, model derecesi seçimi ve ilgili problemler

için F-testi tabanl� bir yöntem önerilmi³tir. F-testi, istastik ile ilgili alanlarda

kullan�lan bir yöntemdir. Bu tez çal�³mas�n�n temel katk�s�, çe³itli i³aret i³leme

problemleri için F-testi tabanl� çözümler sunmas�d�r. Bu çal�³ma do§rusal uzay-

larda bulunan i³aretler üzerinedir.

Temel olarak F-testi bir önemlilik testidir. Bu test, bir modelin ilgilenen i³a-

reti gösterebilmek için yeterli olup olmad�§�n�, daha yüksek dereceli modellere

ihtiyaç duyulup duyulmad�§�n� anlamak için yap�l�r. Test için farkl� derecelerde

iki adet içiçe modele ihtiyaç duyulmaktad�r. Her iki model için de RSS (Resi-

dual Sum of Squares) veya AKT (Art�k Kareler Toplam�) de§erleri hesaplan�r
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ve bu de§erler F-testi kullan�larak kar³�la³t�r�l�r. Test sonucuna göre, dü³ük de-

receli modelin neredeyse yüksek dereceli model kadar iyi oldu§u veya yüksek

dereceli modelin modelleme do§rulu§unu önemli bir biçimde iyile³tirdi§i karar�

verilir. Önerilen yöntem temel olarak F-testi yönteminin tekrarlamal� olarak kul-

lanmaktad�r. Yöntem, uygun olan model derecesini birden fazla F-testi yaparak

seçmektedir.

Bu çal�³mada, model derecesi seçimi ile ilgili baz� probemler F-testi tabanl� yak-

la³�mlarla çözülmü³tür. �lk olarak, do§ru oturtularak yap�lan s�f�r kesim noktas�

kestirimi problemi için analiz penceresi uzunlu§u seçimi problemine bir yöntem

önerilmi³tir. �kinci örnek problem olarak, çok tonlu i³aretlerin bölümlenmesi

problemi incelenmi³tir. Benzer bir yakla³�m�n FM i³aretler için uygulanmas�

üçüncü örnek problem olarak verilmi³tir. Dördüncü örnek olarak da, bir i³aretin

Prony yöntemi ile sadece kutuplu süzgeç ç�kt�s� olarak modellenmesi probleminde

kutup say�s� seçimi için bir yöntem önerilmi³tir. Son problem ise, sönümlü si-

nüs i³aretlerinden olu³an bir i³aretin Prony yöntemi kullan�larak bölümlenmesi

üzerinedir. Örnek problemler için benzetim sonuçlar� sunulmu³tur.

Anahtar Kelimeler: �³aret Modellemesi, Do§rusal Modeller, Parametre Kesti-

rimi, Model Derecesi Seçimi, Model Geçerlili§i, Analiz Penceresi Uzunlu§u Se-

çimi, Önemlilik Testi, F-testi, �çiçe Modeller, S�f�r Kesim Noktas� Kestirimi,

Bölümleme.
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CHAPTER 1

INTRODUCTION

In many applications of signal processing area, the input signal is modeled with

a suitable and mathematically manageable model in the �rst steps of processing.

The selection of a suitable model and its parameters is a fundamentally impor-

tant signal processing problem in several applications such as power spectrum

estimation with all pole modeling, impulse response modeling with Kth order

�lters etc. Dictionary meaning of the word �model� is given as mathematical

description used for guidance or imitation [19]. According to this de�nition,

there is no such thing as correct model. Indeed, a model is suitable if it satis�es

requirements of the problem. Once a suitable model is determined, the model

parameters are then estimated from the input.

Generally the model accuracy depends on its complexity. Using more parameters

provides more detailed and potentially more accurate model. However, generally

these parameters are estimated from observed signal and observation contains

noise in addition to the actual signal that should be modeled. Estimations are

prone to statistical errors caused by noise. Therefore, the model accuracy may

get worsen after some point as more and more parameters are estimated from

noisy observations. The model complexity and the model accuracy should be

balanced. Then, fundamental questions of signal modeling arise: Which signal

model should be used for a speci�c problem? Do we have simple models that

satisfy problem requirements or do we need more complex ones?

Ideally, the signal model should be as simple as possible and at the same time

represent the signal of interest with high �delity. In addition the fact that
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simple models are less prone to the e�ects of noise on parameter estimation,

they also simplify the subsequent signal processing operations. It can be said

that the main approach in model selection follows the principle of Occam's which

is the utilization of the simplest model, the model with fewest constraints and

assumptions, among the useful models.

The problem of model order selection has been examined from di�erent view-

points. One of the earliest works for model order selection problems is cross-

validation. Cross-validation is primarily a way of measuring the predictive per-

formance of a statistical model. Basically, a training set is chosen from observa-

tion to apply cross-validation. Then, training is done with the chosen set and the

remaining observations are used for parameter estimations. By comparing errors

for di�erent set selections, cross-validation tries to �nd a suitable model for ob-

servation. K-fold cross-validation and leave-one-out cross-validation (LOOCV)

are some example methods based on this approach. Also, there are informa-

tion theory based approaches for model order selection. These approaches can

be related with cross-validation based ones [31]. One of them is the Akaike

Information Criterion, (AIC) which evaluates the generalized likelihood of the

model, after estimating its parameters, and penalizes the likelihood with a rate

proportional to the number of parameters [1]. Using a higher order model re-

duces the representation error, i.e. increases the generalized likelihood, at the

expense of penalty associated with the higher order model. AIC seeks a balance

between representation error and penalty. Several other criteria, similar to AIC,

have been proposed in the literature [6,20,30,33]. Among these, Bayesian Infor-

mation Criterion (BIC) and Generalized Information Criterion (GIC) have also

found several applications [9, 20, 26,36].

In this thesis work, a model order selection rule is proposed for signals in linear

spaces that are observed under additive white Gaussian noise. The proposed

method is based on a statistical test used for ANOVA in statistics related disci-

plines called F-test [4, 23]. There are some books and papers that utilize F-test

for radar, communication, biomedical, array processing and some signal process-

ing problems [3, 8, 10, 13, 15, 16, 34]. Although the origins of F-test date back to

1920's, it is not widely used in signal processing area [22].
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In this thesis work, F-test based solutions for various signal processing problems

are given. These problems are parameter estimation, model order selection,

model validity and analysis window length selection problems. Di�erent from the

previously mentioned information theory based criteria, there is not any explicit

penalty term related with the number of used parameters in F-test. However as

it will be more clear in the following chapters, F-test based approaches for given

problems use simple models with a predetermined probability of false model

selection. Although fundamentals of all approaches are the same, they may not

be used interchangeably for all cases.

1.1 Outline of The Thesis

This thesis work is divided into 5 chapters and the following chapters are orga-

nized as follows:

In Chapter 2, the properties of linear signal models are given to explain the basics

of F-test based approach. Problems of interest and possible problem types are

de�ned.

In Chapter 3, the basics of F-test are explained. F-test based solution approaches

are suggested for the problems of interest.

In Chapter 4, the approaches proposed in Chapter 3 are applied with or without

minor modi�cations on di�erent signal processing problems.

In Chapter 5, a summary of the thesis work and possible future works are given.

1.2 Special Variables

Throughout this thesis work, some variables are given special meanings. List of

reserved variables is given in Table 1.1. Although all variables will be de�ned in

the following chapters properly, list is given as reference to reader. However, it

should be noted that some variables may be used to represent other quantities

inadvertently. Unless explicitly noted, they will be used with these meanings
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after de�ning them in the following chapters properly.

Table 1.1: Special Variables

Variable Represents

A Design matrix of a linear signal model
A Amplitude of a sinusoidal signal
e Residuals vector
F Most of the time F ratio value and sometimes frequency of a

discrete time sinusoidal signal (cycles/sample)
f Frequency of a continuous time sinusoidal signal (Hz)
h Impulse response of an LTI system
I Identity matrix
K Order of the actual signal model
L Order di�erence between higher and lower order nested models.
l Linear component of a signal
M Model order of the model signal. For nested case, order of the

lower order model
MH Model order of the model signal. For nested case, order of the

higher order model
N Number of observations
p Parameter vector of a linear signal model
p Number of poles
q Number of zeros
s Signal vector
w Noise vector
x Signal (in a linear space) vector
y Observation vector
z Number of zeros
ε Approximation error
Ω Frequency of a discrete time sinusoidal signal (rad/sample)
ω Frequency of a continuous time sinusoidal signal (rad/second)

1.3 Publications

The conference article [35] was presented in 23rd Signal Processing and Commu-

nications Applications Conference (SIU'15). Also poster entitled �Model Order

Selection Using F-Test� was presented in METU EEE Graduate Research Work-

shop'15.
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CHAPTER 2

PROBLEM DEFINITION

2.1 Linear Signal Model

In this work, real valued discrete time signals in linear spaces are considered.

Although real signals are considered, the comments below can be extended to

complex signals with proper declaration of operators. Signal model is given as

x = Ap. (2.1)

Here, x is the signal vector.

Consider a signal in a linear space of dimensionK observed at N di�erent points.

Each xi in

x ,


x1

x2

...

xN


Nx1

stands for one signal sample.

In the following equation, p is a column vector and is called the parameter

vector. Each pi in

p ,


p1

p2

...

pK


Kx1

represents a single parameter of the signal given in (2.1).

5



In the following equation, A is called the design matrix,

A ,
[
a1 a2 . . . aK

]
NxK

(2.2)

where each ai is de�ned as

ai ,


ai1

ai2
...

aiN


Nx1

. (2.3)

The A matrix can also be written as

A =


a11 a12 a13 . . . a1K

a21 a22 a23 . . . a2K

...
...

... . . .
...

aN1 aN2 aN3 . . . aNK


NxK

by combining (2.2) and (2.3).

The signal space or the column space of A is represented by C(A) and is

de�ned as the space spanned by the ai vectors (columns of A). The x vector is

an element of this space (i.e. x ∈ C(A)).

If x is a uniquely identi�able vector with K parameters, then

rank(A) = K. (2.4)

In other words, ai (i = 1 : N) should form a linearly independent set.

It is assumed that the signal given in (2.1) is observed under zero-mean additive

white Gaussian noise (AWGN) with variance σ2 as

y = x+w = Ap+w. (2.5)

Here, y is the observation vector. Each yi in

y ,


y1

y2

...

yN


Nx1
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represents an observation point.

In equation (2.5), w is the noise vector representing the additive noise. Each

wi in

w ,


w1

w2

...

wN


Nx1,

is a random variable with the following distribution

wi ∼ N(0, σ2).

Mainly two di�erent problems can be de�ned for signals in linear spaces observed

under AWGN namely �Parameter Estimation� and �Model Order Selection�.

2.2 Parameter Estimation Problem

One of the most important research topics in signal processing problems is the

estimation of the signal parameters from noisy observations. For the case pre-

sented in the preceding section, the problem is the calculation of p̂ which is

the estimate of p from y. An e�ective parameter estimation method which can

be applied here is the Maximum Likelihood Estimator (MLE). For this speci�c

case, Least Squares (LS) and MLE solution gives the same result due to the

signal model and the noise characteristics [18]. LS solution is found as,

p̂ = A+y (2.6)

where A+ is Moore�Penrose pseudoinverse of A for N ≥ K case de�ned as [14]

A+ , (ATA)−1AT. (2.7)

Consequently the LS signal estimate can be written as

x̂ = Ap̂

by using parameter estimates.

7



The LS solution tries to minimize L2-norm of the error de�ned as

e , y − x̂. (2.8)

In other words, the vector p̂ satis�es the following,

p̂ = arg min
p

||e||2 (2.9)

equality.

In statistics and in some other research �elds, the resultant error on the obser-

vation vector after minimization given in (2.9) is called as the Residual Sum

of Squares (RSS) and it is expressed as

RSS = ||e||2. (2.10)

In the following sections, the e�ect of N on the parameter estimation problems

is analyzed for N < K and N >= K. It will be assumed that the signal model

is known completely. i.e. the matrix A and the parameter K are known.

2.2.1 N < K (Insu�cient Number of Observations)

The condition, rank(A) = K, should be satis�ed in order to uniquely identify

the K di�erent parameters of the signal. However, in that case the following

situation will occur: rank(A) = K ′ < K which violates the condition given in

(2.4). It may be thought that x is a linear combination of K ′ di�erent param-

eters, not K. At least K observations should be made to observe and estimate

the e�ects of K di�erent parameters. It also makes sense that estimation of

K di�erent parameters from less number of observations causes some problems.

Mathematically, (ATA) product becomes singular. Therefore, (ATA)−1 does

not exist. Consequently, it is general not feasible, to use less thanK observations

to estimate K di�erent parameters.
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2.2.2 N ≥ K (Su�cient or More Than Su�cient Number of Obser-

vations)

In this case, if rank(A) = K then the parameters can be estimated without

having any trouble in the calculation of A+. The relationship between the

parameter estimation accuracy and the number of observations will be examined

next. The estimation accuracy can be expressed by using the covariance matrix

of the estimates, de�ned as follows

Σp̂ , E{
[
p̂− µp̂

] [
p̂− µp̂

]T}, (2.11)

Σp̂ =



σ2
p11

. . . . . . . . . . . .
... σ2

p22
. . . . . . . . .

...
... σ2

p33
. . . . . .

...
...

...
. . . . . .

...
...

...
... σ2

pMM


M×M.

Here, µp̂ and σ
2
pii

are de�ned as follows

µp̂ , E{p̂}, (2.12)

σ2
pii

, var(p̂i).

Trace of the covariance matrix can be written as

tr(Σp̂) =
M∑
i=1

σ2
pii

=
M∑
i=1

var(p̂i).

Using (2.6) and (2.7), (2.12) can be written as follows

µp̂ =E{A+y}

=E{A+(Ap+w)}

=E{A+Ap}+ E{A+w}

=p

which implies that the LS solution is an unbiased estimate of p.
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Equation (2.11) can expanded further as follows

Σp̂ =E{
[
A+y − µp̂

] [
A+y − µp̂

]T}
=E{

[
A+w

] [
A+w

]T}
=A+ΣwA

+T

. (2.13)

Trace of the matrices at both sides of the equation in (2.13) can be written as

follows

tr(Σp̂) = tr(A+ΣwA
+T

)

= tr((ATA)−1ATΣw((ATA)−1AT)T)

= tr((ATA)−1ATΣwA(ATA)−1). (2.14)

Due to the assumed noise characteristics, the covariance matrix of noise can be

written as

Σw = σ2I. (2.15)

Using (2.15), (2.14) can be written as follows

tr(Σp̂) =σ2 tr((ATA)−1ATIA(ATA)−1)

=σ2 tr((ATA)−1). (2.16)

De�ne AN and AN+1 matrices as follows

AN ,


a11 a12 . . . a1K

a21 a22 . . . a2K

...
...

...

aN1 aN2 . . . aNK


N×K,
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AN+1 ,



a11 a12 . . . a1K

a21 a22 . . . a2K

...
...

...

aN1 aN2 . . . aNK

a(N+1)1 a(N+1)2 . . . a(N+1)K


N+1×K,

AN+1 =

AN

aT


N+1×K,

a ,


a(N+1)1

a(N+1)2

...

a(N+1)K


K×1.

Here, AN and AN+1 matrices represent the A matrix when N and N + 1 ob-

servations are made, respectively. Consider the (ATA)−1 term shown in (2.16).

It can be written for N + 1 observations case as follows

AT
N+1AN+1 =AT

NAN + aaT,

(AT
N+1AN+1)−1 =(AT

NAN + aaT)−1

and using Matrix Inversion Lemma,

(AT
N+1AN+1)−1 =(AT

NAN)−1 − (AT
NAN)−1aaT(AT

NAN)−1

1 + aT(AT
NAN)−1a

,

tr((AT
N+1AN+1)−1) = tr((AT

NAN)−1)

− tr

(
(AT

NAN)−1aaT(AT
NAN)−1

1 + aT(AT
NAN)−1a

)
. (2.17)

Consider the second term in (2.17). It can be written as

tr

(
(AT

NAN)−1aaT(AT
NAN)−1

1 + aT(AT
NAN)−1a

)
= tr

(
a(AT

NAN)−2aT

1 + aT(AT
NAN)−1a

)
. (2.18)

Since ATA is a positive semi-de�nite matrix (ATA ≥ 0), (2.18) is always posi-

tive; hence tr
(
(AT

N+1AN+1)−1
)
≤ tr

(
(AT

NAN)−1
)
.

Consequently, an increase in the number of observations leads to an increase in

the parameter estimation accuracy.

11



2.3 Model Order Selection Problem

In another possible scenario, model order (K) may be unknown. This problem

is similar to the previous estimation problem. However, in this case in addition

to the parameters to be estimated, model order is also unknown and it should

be estimated too.

Let us assume that unknown and actual dimension of the signal space is K. Also

assume that M represents the order of the tested model. In other words, order

of the signal model is assumed to beM during parameter estimation. According

to the relation between K and M , three di�erent cases can be analyzed.

In the following sections, it is assumed that N is �xed. N is also assumed to be

high enough to satisfy the condition in (2.4). In other words, N is greater than

or equal to the order of the model with the highest order. Dependency of the

expressions on N is not shown explicitly. However, the model order is shown

explicitly in the expressions as subscript like Xmodel order if necessary.

2.3.1 M = K (Tested Model Order Matches The True Order)

Let us rewrite the error given in (2.8) as follows

e =y −AM p̂

=(I −AMA
+
M)y

=(I − PAM
)y

=P⊥
AM
y. (2.19)

Here, PAM
is a projection matrix de�ned as

PAM
, AMA

+
M

and it projects (observation) vectors to the model signal space denoted as

C(AM ).

Similarly, P⊥
AM

is a projection matrix de�ned as

P⊥
AM

, I − PAM
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and it projects (observation) vectors to the noise space. Noise space and model

signal space are orthogonal subspaces of the observation space. Dimensions

of the model signal space, noise space, observation space and signal space are

M , N −M , N , K, respectively.

The error expression given in (2.19) can further be simpli�ed as

e =P⊥
AM

(AKpK +w)

=P⊥
AM
w.

Rewrite the RSS de�ned in (2.10) as follows

RSS =||e||2 = (P⊥
AM
w)TP⊥

AM
w

=wT(P⊥
AM

)TP⊥
AM
w

=wTP⊥
AM
w (2.20)

and this �nal relation shows that only source of the error is noise. If y were a

noiseless signal, i.e., x were used directly for estimation, parameters could be

perfectly estimated.

P⊥
AM

can be decomposed into its eigenvalues and eigenvectors as

P⊥
AM

=
N∑
k=1

λkekek
T.

This is an N ×N square matrix. Since it is a projection matrix, its eigenvalues

(λK) are either 0 or 1 as

λk =

0 1 ≤ k ≤M

1 M + 1 ≤ k ≤ N.

Since the dimension of the noise space is N−M , N−M andM of eigenvalues are

1 and 0, respectively [14]. Finally, projection matrix expression can be written

as

P⊥
AM

=
N∑

k=M+1

ekek
T

where ek's are N × 1 orthonormal column vectors.
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The RSS expression de�ned in (2.20) is continued as follows

RSS =wT

N∑
k=M+1

ekek
Tw

=
N∑

k=M+1

wTekek
Tw

=
N∑

k=M+1

(ek
Tw)2 (2.21)

=
N∑

k=M+1

z2
k

where

zk ,

ek
Tw M + 1 ≤ k ≤ N

0 otherwise.

The elements of the noise vector (w) consist of N independent random variables

(wk) with N(0, σ2) distribution. Consequently, Σw = σ2I. Each zk is also a

random variable with distribution N(0, ek
Tσ2Iek). Since, ek's are mutually

orthonormal vectors, zk ∼ N(0, σ2). Notice that similar to wk, each zk is an

independent identically distributed (I.I.D.) random variable and that makes

RSS ∼ σ2χ2
N−M (2.22)

relation possible.

χ2
N−M term in (2.22) represents a chi-squared distribution with N −M degrees

of freedom. Expected value of RSS is given as

E[RSS] = σ2(N −M). (2.23)

2.3.2 M > K (Tested Model Has Higher Order)

In that case, order of the tested model is greater than the order of the actual

signal model. Let us expand the matrix A, considering di�erent model orders

as follows

AK =
[
a1 a2 . . . aK

]
N×K,
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AM =
[
a1 a2 . . . aK aK+1 . . . aM

]
N×M

=
[
AK aK+1 . . . aM

]
N×M

(2.24)

where

L ,M −K.

As shown in (2.24), AK is included in AM completely. These two di�erent

models with model degree of K and M are said to be nested models. Model

with model degree K is nested in model with model degree M . Model with

model degree M has L additional parameters in comparison with the model

with degree K. Two models generate the same signal. For the given nested

model de�nition,

C(AK) ⊂C(AM ),

C(P⊥
AM

) ⊂C(P⊥
AK

)

relations are valid. Error expressions can be written as follows

e =y −AM p̂M

=(I −AMA
+
M)y

=(I − PAM
)y

=P⊥
AM
y

=P⊥
AM

(AKpK +w) (2.25)

=P⊥
AM
w. (2.26)

Notice that progression from (2.25) to (2.26) is correct since P⊥
AM

(AKpK) = 0.

Result of AKpK is a column vector which is an element of C(AK). Due to the

fact that the model with model degree K is nested in the model with model

degree M , it is also an element of C(AM ). P⊥
AM

projects vectors to the noise

space which is orthogonal to C(AM ). Therefore, P⊥
AM

(AKpK) yields 0.

Summary of the last two sections is that while M ≥ K, the error expressions

given in (2.22) and (2.23) are valid. As long as this condition is met, only source

of the error are the noise components projected onto the noise space.
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2.3.3 M < K (Tested Model Has Smaller Order)

In this case, order of the model signal is less than the order of the actual signal.

Expressions forM > K case can be de�ned similarly for this situation as follows

AK =
[
a1 a2 . . . aM aM+1 . . . aK

]
N×K

=
[
AM aM+1 . . . aK

]
N×K,

L , K −M,

C(AM ) ⊂C(AK),

C(P⊥
AK

) ⊂C(P⊥
AM

),

x =AKpK ,

e =y −AM p̂M

=(I −AMA
+
M)y

=(I − PAM
)y

=PAM

⊥y

=PAM

⊥(x+w).

In contrast to the previously analyzed M ≥ K case, the model signal space is

a subspace of the actual signal space. PAM

⊥x 6= 0 for this case. There are

remaining components of the actual signal in the noise space after projection.

There are L extra non-zero parameters in the actual signal which can not be

modeled completely by the model signal. De�ne ck term similar to de�nition

given in (2.22) as

ck ,

ek
Tx 1 ≤ k ≤ K

0 otherwise.

Similar to (2.21), RSS can be written as follows

RSS =
N∑

k=M+1

(ek
T(x+w))2

=
K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
N∑

k=M+1

z2
k. (2.27)

16



Expected value of RSS is given as

E [RSS] = σ2(N −M) +
K∑

k=M+1

c2
k.

In summary, di�erent than M ≥ K case there is a constant error term in the

mean value of RSS which is independent from the noise signal as shown in (2.27).

This term can be thought as the bias part of the error. This bias part is caused

by the insu�ciency of the model signal. Di�erent than the other cases, even for

noiseless situation RSS 6= 0.

2.3.4 Summary of Results

In the previous sections, parameter estimation problem of a signal from its noisy

observation was examined. Depending on the relation between M and K, RSS

can be expressed as follows

RSS =



N∑
k=M+1

z2
k K < M

N∑
k=M+1

z2
k K = M

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
N∑

k=M+1

z2
k K > M.

(2.28)

For all conditions, expected value of RSS is given as follows

E[RSS] =


σ2(N −M) K < M

σ2(N −M) K = M

σ2(N −M) +
K∑

k=M+1

c2
k K > M.

RSS value for noiseless case is given as follows

RSSnoiseless =


0 K < M

0 K = M
K∑

k=M+1

c2
k K > M.
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In the last section, the change in RSS with respect to problem parameters is

analyzed. K (true model order) will be varied while M (tested model order) is

kept �xed. Since RSS value is the same for K < M and K = M as shown in

(2.28), these two cases can be combined as a single K ≤M condition.

2.3.4.1 K ≤M

Let us consider two di�erent test models with order M and MH , both of which

are greater than the true model order K. Relationship between orders are given

as follows

MH =M + L,

L >0,

M + L <N

and two models are considered to be nested.

For nested models, the relations given below

C(AM ) ⊂C(AMH
),

C(P⊥
AMH

) ⊂C(P⊥
AM

)

remain valid as discussed previously.

RSS can be written as

RSSM =
N∑

k=M+1

z2
k,

RSSMH
=

N∑
k=MH+1

z2
k =

N∑
k=M+L+1

z2
k

where the equation (2.28) is used.

The di�erence between the two RSS values then becomes

RSSM − RSSMH
=

N∑
k=M+1

z2
k −

N∑
k=M+L+1

z2
k

=
M+L∑
k=M+1

z2
k. (2.29)
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Therefore, RSS of the higher order model is smaller than the lower order model

where the exact RSS di�erence is given in (2.29).

2.3.4.2 K > M

Similar to the previous case, let us take two nested models with degree M and

MH , both of which have smaller model order than the actual order. Relationship

between orders are given as follows

MH =M + L,

L >0,

M + L <N,

MH <K

and two models are considered to be nested.

For nested models, the relations given below

C(AM ) ⊂C(AMH
),

C(P⊥
AMH

) ⊂C(P⊥
AM

)

remain valid as discussed previously.

Using equation (2.28), RSS can be written as follows

RSSM =
K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
N∑

k=M+1

z2
k,

RSSMH
=

K∑
k=MH+1

c2
k + 2

K∑
k=MH+1

ckzk +
N∑

k=MH+1

z2
k. (2.30)

The di�erence between two RSS values then becomes

RSSM − RSSMH
=

M+L∑
k=M+1

c2
k + 2

M+L∑
k=M+1

ckzk +
M+L∑
k=M+1

z2
k

=
M+L∑
k=M+1

(ck + zk)
2

≥0. (2.31)
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So, RSS of the higher order model is smaller than the lower order model where

the exact RSS di�erence is given in (2.31).

As a special case, MH = K (true model order) condition can be analyzed sepa-

rately. Equation (2.30) can be arranged for that special case as follows

RSSM =
K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
N∑

k=M+1

z2
k,

RSSMH
=

N∑
k=MH+1

z2
k.

Then, the di�erence between two RSS values becomes

RSSM − RSSMH
=

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
K∑

k=M+1

z2
k

=
M+L∑
k=M+1

(ck + zk)
2 (2.32)

≥0.

So, RSS of the higher order model is smaller than the lower order model where

the the exact RSS di�erence is given in (2.32).

All results obtained about the model order selection problems up to this point

can be summarized as follows: Independent from the relation betweenK andM ,

as M increases RSS does not increase but decreases on the average. However,

components of RSS varies according to the this relation. When M ≥ K, RSS

consists of noise components in the noise space only. In that case, RSS=0 for

noiseless observation. When M < K, signal components that couldn't be mod-

eled by the signal model remain in the noise space. This additional components

contribute to RSS in addition to noise components. In that case, RSS decreases

as M increases because of the reduction in both signal and noise components.

There is not any signal component projected onto the noise space for M ≥ K

case. As stated previously, K value is unknown for model order selection prob-

lems. Although as M increases, RSS always decreases on the average. This

change is governed by the relation between M and K. The goal of the model

order selection problem is to estimate the model order of the actual signal ob-

served under noise. For that reason, choosingM which minimizes the RSS value
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as the model order estimate is not a suitable approach. ThisM value makes the

estimated signal close to the noisy observations, not to the actual signal. In the

limiting case, taking M = N makes RSS = 0 and independent from K,L and

M but obviously, this is not a valid estimate of K. M should be chosen close

to K even though RSS value is lower for higher M values. When M = K all

components of the signal lie in the model signal space. This is the best condition

where M is minimum and all signal components are in the model signal space.

This situation is called as perfect �t.1

All signal components still continue to stay in the model signal space but new

noise components will be an element of the model signal space as M increases

beyond K. In that case, the estimated signal is the sum of x and noise com-

ponents projected onto the model signal space. This is not a desired case for

the estimation since the signal to be modeled includes some additional noise

components. This case is called as over �t.

WhenM < K, the model signal can't model all components of the actual signal.

There are some signal components left which are projected onto the noise space

and treated like noise. This is the under �t case.

As shown in the parameter estimation section, using more observations (N) for

parameter estimation improves the estimation accuracy. If results of two types

of problems are thought together, when maximum number of observations (N)

is used (observing the actual signal), using M = K yields the �the best result�

for parameter estimation problems.

2.4 Related Problems

Problems related with parameter estimation of a signal in a linear space from its

noisy observations can be classi�ed into four categories. Each type shares some

common concepts and approaches. Solutions are proposed for each type in the

following chapters.

1 �Perfect �t� should be considered as �perfect order �t� in this thesis work. Perfect �t case does

not imply that the error in the parameter estimation is zero. �Perfect �t� case means that the order

of the model signal is equal to the order of the actual signal (K = M).
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2.4.1 Type I

In this type of problem, it is assumed that noisy observations of two signals with

di�erent models are concatenated to form a single observation. This scenario is

expressed as follows

y1 = x1 +w1 = A1p1 +w1,

y2 = x2 +w2 = A2p2 +w2,

y =


y1

y2

0


and shown graphically in Figure 2.1. Models of two signals are known. A1 and

A2 could be written completely if the length of the each observation was known.

Let us assume that �rst N ′ observations from total N observations belong to

the signal with Model #1 with parameter vector p1 and remaining observations

belong to the signal with Model #2 with parameter vector p2. These two models

may be nested models as well. Correct observations should be used to calculate

p̂1 and p̂2 using LS approach. p̂1 and p̂2 should be estimated using y1 and

y2, respectively. Total observation vector with length N should be split into

two observations with length N ′ and N − N ′ and each observation should be

used for parameter estimation separately. This splitting process and each split

section will be called as segmentation and segment, respectively. N ′ shown

in Figure 2.1 is assumed to be unknown and it should be estimated. If there is

a priori information about N ′, it may be used for segmentation.

Figure 2.1: Illustration of Problem Type I
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2.4.2 Type II

For Type II problem, it is assumed that observed signal is a noisy observation of

a signal with unknown model order. This is a model order estimation problem.

As stated previously, desired result for this parameter estimation problem is

the perfect �t case. One should avoid under �t or over �t cases for estimation

problems. For example, it may be known that the observation with length N is

an observation of a polynomial function under noise but the polynomial order

is unknown.

Estimation of K while N is �xed will be called as Type II problem and it is

illustrated in Figure (2.2).

Figure 2.2: Illustration of Problem Type II

2.4.3 Type III

Type III problem is a combination of Type I and Type II. In addition to Type

I problem, orders of models that should be used for each model signal, i.e. M

values, are also unknown in addition to N ′ value. In this problem, observation

should be segmented as in Type I and suitable signal models should be found

for each segment as in Type II. If model orders shown in Figure 2.1 are also

unknown, this problem is called as Type III problem.
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2.4.4 Type IV

The last problem type is Type IV. In this scenario, parameters of a signal which

is approximately in the assumed signal space is estimated. It is assumed that

observed signal y with length N is a noisy observation of signal s which is given

as

y = s+w.

In contrast to the earlier problem, s is not an element of a linear space, neces-

sarily, that is, it may not satisfy s = Ap condition.

Signal in a linear space is de�ned as

x1 = A1p1. (2.33)

New error term (which results from approximating x using x1) is de�ned as

ε(n) = s(n)− x1(n) (2.34)

and it is called the approximation error. This error is assumed to satisfy the

following inequality,

|ε(n′)| > |ε(n)| where n′ > n.

That is, approximation error increases as the signal drifts away from the assumed

linear signal space. In certain applications, one may wish to approximate s

using x1 and estimate the parameters of x1 from these observations. Question

is how many samples should be used to approximate s as a signal in a linear

space? In other words, what is a good choice for N ′ value shown in Figure 2.3.

While using more observations for parameter estimation of x1 increases the

estimation accuracy, approximation error increases with increasing N . This

situation is called model mismatch. Window between [0 N ′ − 1] is called

analysis window. Observations for parameter estimation are taken within

this window. Selection of N ′ is also called as analysis window length selection

problem.
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Figure 2.3: Illustration of Problem Type IV
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CHAPTER 3

THE PROPOSED METHOD

In this section, the proposed method for the problem types mentioned in the

preceding sections is explained. Main idea is using the maximum number of

observations for parameter estimation while keeping the model mismatches min-

imal, i.e., providing the best parameter estimation results by targeting perfect

�t to the model.

In the previous chapter, change in RSS is analyzed for di�erentM (tested model

order) and K (true model order) values. Basic principle behind the proposed

method is to track the change in RSS. If the order of the actual signal model

(K) is �xed and the order (M) of the model signal is increased from M < K

condition, RSS value drops. This drop is due to the decrease in both signal and

noise components projected onto the noise space. AfterM = K point, reduction

in RSS is solely due to the reduction in noise components projected onto the

noise space. If it is possible to detect this change, it is also possible to detect

when M reaches K, i.e, the perfect �t case. The proposed method tries to make

use of the drop in RSS for model order selection.

A test method known as F-test in literature is studied as a solution for four

types of problems mentioned earlier. Although F-test is well known in the

statistics literature, it is not widely used in signal processing problems, as stated

previously. F ratio (value) is calculated as

F =

RSSM − RSSMH

MH −M
RSSMH

N −MH

(3.1)
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and it will be shown that this ratio is suitable for the problems considered.

To de�ne F value properly,

MH =M + L,

L >0,

MH <N

conditions should be satis�ed.

In equation (3.1), RSSM and RSSMH
represent RSS values when the signal is

modeled with models with order M and MH , respectively. It is assumed that

the model with order M is nested in the model with order MH .

In the next section, the characteristics of F value is studied in order to bet-

ter explain the reasons behind the suggested utilization of RSS in model order

selection better.

3.1 Characteristics of F Ratio

Properties of F ratio is given in [29] in detail. In this section, properties that

are necessary to understand proposed methods are given. F ratio is analyzed

for three di�erent conditions.

3.1.1 M > K

Using equation (2.28), RSS can be written as follows

RSSM =
N∑

k=M+1

z2
k

∼σ2χ2
N−M,

RSSMH
=

N∑
k=MH+1

z2
k =

N∑
k=M+L+1

z2
k

∼σ2χ2
N−M−L. (3.2)

28



Then, the di�erence between RSS values becomes

RSSM − RSSMH
=

M+L∑
k=M+1

z2
k

∼ σ2χ2
L. (3.3)

Using the equations (3.1), (3.2) and (3.3), F ratio can be written as follows

F =

M+L∑
k=M+1

z2
k

L
N∑

k=M+L+1

z2
k

N −M − L

(3.4)

∼

σ2χ2
L

L
σ2χ2

N−M−L

N −M − L

∼

χ2
L

L
χ2
N−M−L

N −M − L

(3.5)

and F ratio is a random variable with F distribution [17].

Consider a random variable, X, de�ned as

X =
x1/d1

x2/d2

. (3.6)

Assume that in (3.6), x1 and x2 terms represent random variables which have

chi-squared distribution with d1 and d2 degrees of freedom, respectively. If

x1 and x2 are independent random variables, X is a random variable with F

distribution [17].

If χ2
L and χ2

N−M−L terms are independent, the expression given in (3.5) is a

random variable with F distribution. Summation terms shown in (3.4) can

be considered to show independence. Due to minimum and maximum limits

of summation terms in the nominator and the denominator, a particular zi is
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summed up in either the numerator or the denominator. There is no common

zi term that appears in both the nominator and the denominator. Since each

zi is independent from each other as explained previously, the numerator and

the denominator are independent from each other. Therefore, the expression

given in (3.5) has an F distribution. F distribution can be characterized by

the degrees of freedom of chi-squared random variables in the numerator and

the denominator. Probability Density Function (PDF) expression of random

variable X de�ned in (3.6) is given in as

f(x; d1, d2) =

√
(d1 x)d1 d

d2
2

(d1 x+d2)d1+d2

xB
(
d1
2
, d2

2

)
=

1

B
(
d1
2
, d2

2

) (d1

d2

) d1
2

x
d1
2
−1

(
1 +

d1

d2

x

)− d1+d2
2

(3.7)

for real x ≥ 0. f(x; d1, d2) = 0 for x < 0. B term in (3.7) is the Beta function

and given as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt for Re(x),Re(y) > 0.

In this work, PDF expression of F distribution is not used directly. Rather

characteristics of F distribution are used. PDFs and CDFs of F distribution for

various parameters are shown in Figure 3.1 and Figure 3.2, respectively.

30



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
PDF of F Distribution for Various Parameters

x

f

 

 
d1=80, d2=100
d1=2, d2=4
d1=16, d2=17
d1=12, d2=24
d1=4, d2=100

Figure 3.1: PDF of F Distribution
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Figure 3.2: CDF of F Distribution
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3.1.2 M < K and MH ≥ K

RSS expressions can be written as follows

RSSMH
=

N∑
k=MH+1

z2
k =

N∑
k=M+L+1

z2
k

∼σ2χ2
N−M−L,

RSSM − RSSMH
=

M+L∑
k=M+1

(ck + zk)
2

=
K∑

k=M+1

(ck + zk)
2 +

M+L∑
k=K+1

z2
k

=
M+L∑
k=M+1

z2
k +

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk.

F ratio de�ned in (3.1) can be written as

F ′′ =

M+L∑
k=M+1

z2
k +

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk

L
N∑

k=M+L+1

z2
k

N −M − L

=

M+L∑
k=M+1

z2
k

L
N∑

k=M+L+1

z2
k

N −M − L

+

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk

L
N∑

k=M+L+1

z2
k

N −M − L

. (3.8)

After that point let F ′ denotes the F ratio de�ned in (3.4) for M > K case.

Then, equation (3.8) can be rewritten as

F ′′ = F ′ +

K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk

L
N∑

k=M+L+1

z2
k

N −M − L

. (3.9)
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r is de�ned as

r ,
K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk

to simplify expressions. It is a random variable de�ned as

r ∼N(µr, σ
2
r),

µr =
K∑

k=M+1

c2
k,

σ2
r =4σ2

K∑
k=M+1

c2
k = 4σ2µr.

When r > 0 condition is met, F ′′ de�ned in (3.9) becomes greater than F ′.

The reason behind the analysis of this condition will be clear in the following

sections. Probability of this condition can be found as follows

Pr{r > 0} =Pr{F ′′ > F ′}

=Q

(
−
√
µr

2σ

)
. (3.10)

Plot of (3.10) is given in Figure 3.3 and Figure 3.4 when σ2 and µr are kept

constant, respectively. When L, M and K are �xed, Figure 3.4 also can be

thought as probability values for di�erent SNR values of observations. As SNR

of observed signal increases, probability of F ′′ > F ′ increases.

The mean value of F ′′ can be found as

E [F ′′] =E [F ′] + E



K∑
k=M+1

c2
k + 2

K∑
k=M+1

ckzk

L
N∑

k=M+L+1

z2
k

N −M − L



=E [F ′] +
N −M − L

L
E


K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk

N∑
k=M+L+1

z2
k

 . (3.11)
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Figure 3.3: Pr{F ′′ > F ′} for Di�erent µr Values with Fixed σ2
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Figure 3.4: Pr{F ′′ > F ′} for Di�erent σ2 Values with Fixed µr

Consider the second term in (3.11). The second expectation term can be written
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as follows

E


K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk

N∑
k=M+L+1

z2
k

 =E


K∑

k=M+1

c2
k

N∑
k=M+L+1

z2
k

+ 2E


K∑

k=M+1

ckzk

N∑
k=M+L+1

z2
k

 . (3.12)

In this expression numerator and denominator of the �rst term are both positive.

So, expectation of the �rst term in (3.12) is a positive value. De�ne

r ,
n

d
=

K∑
k=M+1

ckzk

N∑
k=M+L+1

z2
k

to simplify expressions. Notice that due to summation indices, n and d are

independent. From law of total expectation, expectation of r can be written as

E [r] =Ed

[
Er|d[r|d]

]
.

Since Er|d[r|d] = 0 for all r and d values, E[r] = 0. So, expectation of the second

term in (3.12) is 0 and it makes E [F ′′] > E [F ′]. F ′′ which is the value of F when

MH ≥ K > M is greater than F ′ which is the value of F when MH > M ≥ K

in average. The exact expression is given in (3.9).

3.1.3 MH < K

For this case, RSS values can be written as follows

RSSM =
K∑

k=M+1

c2
k + 2

K∑
k=M+1

ckzk +
N∑

k=M+1

z2
k,

RSSMH
=

K∑
k=MH+1

c2
k + 2

K∑
k=MH+1

ckzk +
N∑

k=MH+1

z2
k,

RSSM − RSSMH
=

M+L∑
k=M+1

c2
k + 2

M+L∑
k=M+1

ckzk +
M+L∑
k=M+1

z2
k.

F ratio can be written as

F ′′′ =
N −M − L

L

RSSM − RSSMH

RSSMH

.
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In that case, it is not so easy to show the relation between F ′′′ and F ′ due to ck

terms in both numerator and denominator. Furthermore, �nal expressions would

be dependent on almost all problem parameters and they should be analyzed

for various cases. However, one does not have to �nd all equations for all cases

in order to understand the operation of the F-test for MH < K condition.

Therefore, instead of a given set of equations for all cases, important results are

emphasized for particular cases.

F-test as de�ned in the next section is actually a test of signi�cance as stated

previously. It gives decisions according to F values. Larger F values for two

nested model with order M and MH mean that the model with order MH im-

proves the model accuracy or model the actual signal �signi�cantly better� than

the model with order M . If the value of F ratio is relatively low, it means that

the model with orderMH does not improve the modeling accuracy �signi�cantly�

than the model with order M .

F ratio can also be seen as only the ratio of RSS values for di�erent orders of

model signal if the ratio formed by skipping N , M and L terms shown in (3.1).

F ′ value is calculated for the case when the model orders of both model signals

are greater than the order of the actual signal. In that case, both RSS values

are error signals caused only by observation noise.

It was shown that F ′′ is greater than F ′ with an increasing probability with an

increase in SNR. Also the inequality F ′′ > F ′ is true in average. The reason is

that RSSM consists of both noise and signal components that can not be mod-

eled whereas RSSMH
does not have any signal component. So, it makes sense

that RSSM − RSSMH
can be greater than the previous case. This situation can

also be considered from signi�cance perspective: F ratio increases because the

model with order MH models the actual signal �signi�cantly better� than the

model with order M . The model with order M has some missing signal com-

ponents. The di�erence between two F values (F ′ and F ′′) is highly dependent

on the di�erence between magnitudes of the signal components that can not be

modeled by a model with order of M and noise components added to the signal

space when the model order is increased from M to MH . If magnitude of the
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mentioned signal components becomes greater than the magnitude of mentioned

noise components, change in F ratio becomes more distinguishable.

However, F ′′ < F ′ may be true with a non-zero probability depending on the

SNR value as shown in Figure 3.4. Low F ratio means that model with or-

der MH does not model the signal �signi�cantly better� than model with order

M . This may be true in low SNR case particularly. In this case, the signal

components that can't be modeled by the lower order model, M , may not be

distinguishable than the noise components that are included in the model signal

space when the model order is changed from M to MH . To avoid this situation,

the missing signal components should be �su�ciently� dominant than the new

noise components added in the model signal space when the model order is in-

creased. If the newly added signal components aren't dominant than the noise

components, F-test will fail to distinguish the signal components from the noise

components.

In the last case, both models with model order M and MH can't estimate all

components of the actual signal. Both RSS values have signal components that

can't be modeled by the model signal as an error source. Firstly, let us consider

high SNR and M < MH < K case. In that case, most of the reduction in RSS

when the model order is changed from M to MH is caused by the reduction in

signal components that can't be modeled by insu�cient models. If this reduc-

tion is �sign�cant�, then F ′′′ > F ′. For low SNR case, reduction in RSS when

the model order is increased is dominated by the new noise components included

in the new model signal space rather than the actual signal components. This

makes F ′′′ ' F ′, meaning that reduction in RSS is probably due to noise com-

ponents and there is not any �sign�cant� signal component that is modeled by

the higher order model. The lower order model can model the actual signal �as

good as� the higher order one.
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3.2 The F-test

F-test was initially developed in the statistics literature as the variance ratio by

Fisher in 1920s [22].

The ultimate goal of the F-test based approaches in this thesis work is to estimate

the number of parameters, K̂, in other words model order of a signal in a linear

space using N noisy observations. If K̂ is estimated close to K then p̂ can be

found accurately as in perfect �t case. Suggested algorithm is given as follows:

1. Initially a false decision probability should be determined. The e�ect of

this parameter will be explained in detail. This value will be denoted by

pfd. Since it denotes a probability, pfd can be 0 ≤ pfd ≤ 1. However, the

inequality given below should be considered to make F-test useful,

0 < pfd < 1.

2. Two suitable nested models with model degree M and MH (MH > M)

should be determined for the problem. If there is not any a priori infor-

mation about K, model degrees should be chosen as low as possible. Also,

MH should be close to M as much as possible to increase K̂ resolution.

If it is possible, taking MH = M + 1 gives the best K̂ resolution. How-

ever, this may not be logical for all problems which is shown in one of the

example problems later.

3. A threshold should be chosen for F-test. This threshold value is calculated

by making K ≤ M < MH assumption. Previously, it was shown that F

ratio for that case (F ′) is a random variable with F-distribution: F ′ ∼
F(L,N − MH). The calculated F ratio is checked against assumed F-

distribution. This is done by calculating a threshold value using the CDF

of F-distribution and pfd value as given in (3.13).

threshold = FCDF
−1(1− pfd, L,N −MH) (3.13)

If the assumption is correct, F < threshold condition is satis�ed with

1− pfd probability.
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4. F ratio given in (3.1) is calculated by using RSSM and RSSMH
values.

Then, F ratio is compared against threshold value. If F ≥ threshold, it

is assumed that model with order MH can model the signal �signi�cantly

better� than model with order M . In other words, M < K. On the other

hand, test may give wrong decision with pfd probability even if the initial

assumption (K ≤ M < MH) is valid. This is why pfd is called as false

decision probability.

5. Both M and MH are increased by the same amount. Most of the time,

increasing them by one is suitable in order to keep K̂ resolution high. This

increase may be taken higher than one in order to speed up the test at

the expense of K̂ resolution. New threshold and F ratio is calculated

and compared for new M and MH values. This increase, calculate and

compare cycle is continued until F < threshold condition is met. When

F < threshold condition is met, it is decided that model with order M

can model the actual signal �su�ciently good� as model with order MH .

Therefore, model order of the actual signal can be taken as K̂ = M .

Here, it is assumed that one of the tested models is appropriate for the actual

signal. Then, F-test is used to select the appropriate one from the set of tested

models.

�Su�ciency� or �goodness� is directly related with pfd parameter. Under any

circumstances, 0 < F < ∞. As pfd decreases, threshold increases as it can

be seen from Figure 3.2. As threshold increases, F < threshold condition is

satis�ed at lower M and MH values. As false decision probability decreases,

�su�ciency� condition becomes �tighter�. One can consider taking pfd values

low in order to increase threshold and put more strict �su�ciency� conditions.

However, in that case there is a risk such that F ratio can be smaller than

threshold at the beginning of the test, e.g., when M = 1 and MH = 2 so K

can't be estimated properly. This situation causes under �t. On the other hand,

taking pfd so high increases the probability of over �t.

Choice of pfd value a�ects the performance of F-test directly. Optimum pfd value

for the best performance is not the subject of this thesis study and it deserves
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special consideration. In this study, pfd is chosen as 0.1 in general empirically.

However, the e�ect of pfd on performance will be shown with simulation results.

One of the main advantages of F-test is that it does not use the noise variance

(σ2) information. Noise variance may be unknown and does not need to be

estimated. F ratio is found using RSS values and threshold is calculated using

the CDF of F-distribution. On the other hand, SNR should be relatively high

enough to �nd K̂ close enough to K. This is because, F-test should be able

to distinguish reasons behind the decrease in RSS as model order of the model

signal increases as explained previously. If SNR is not high enough, it couldn't

be possible to understand whether the decrease is caused only by the reduction

of noise components or noise components plus signal components. In that case,

F-test may decide to stop at a model with order much lower than K and de-

cide that it is �good enough� to model observed signal since further increase in

model order does not provide additional �signi�cant� bene�ts. Obviously, this

is not the desired case for model order estimation problems. E�ects of SNR on

relations between the F ratios for di�erent cases were mentioned brie�y in the

previous sections with the help of Figure 3.4. The relationship between SNR

and parameter estimation error may be analyzed in a separate study.

3.3 Application of F-test to The Related Problems

In this section, solution approaches based on F-test are suggested for previously

mentioned four di�erent problem types. In the next chapter, these approaches

will be supported by examples.

3.3.1 Type I

Utilization of search window is suggested for this type of problems. Length

of search window will be denoted by Nsw. This window is shifted step by step

(for example, one by one) through observation vector from the beginning to

the end. This shift corresponds to taking Nsw samples from di�erent locations

of the observation vector. The lower order model with order M is chosen as
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Model #1 which is shown in Figure 3.5. The higher order model with order MH

covers both Model #1 and Model #2. Notice that, the two models become

nested models with this selection rule. F-test is done for each window. If

F < threshold condition is satis�ed for a window, it can be said that this

particular window consists of observations from only Model #1, otherwise it

is decided that observations from both Model #1 and Model #2 exist in that

window.

It is assumed that Nsw = MH + 1 which is the minimum allowable Nsw not

to have problems related with rank and make RSSMH
= 0. Suppose that the

�rst window does not have any observation from Model #2. As the search

window is shifted step by step, after some point it includes the point N ′ shown

in Figure 3.5 and the windowed observation consists of observations from both

models. In this case F ≥ threshold condition is satis�ed. For example, centre

of the search window may be taken as N̂ ′ when F �rst becomes greater than

threshold. Depending on the speci�c problem, the N̂ ′ estimation can be found

in a di�erent way like by taking the starting point, not the centre, of the search

window as N̂ ′.

Depending on the desired resolution of N ′, Nsw and shifting step size may be

modi�ed. This solution approach is illustrated in Figure 3.5.

Figure 3.5: Illustration of Proposed F-test Based Approach for Problem Type I

3.3.2 Type II

This type is a straightforward problem for F-test approach. Two models with

order M and MH with MH > M condition are determined initially. They

should be nested models. Furthermore keeping MH −M di�erence small, like
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one, improves the K̂ resolution. RSS values are calculated for each model and

F ratio is found. If the condition F ≥ threshold is satis�ed, it is assumed

that M < K . M and MH are increased while keeping the MH −M di�erence

the same. Then F and threshold are compared. This cycle continues until the

F < threshold condition is met. When F becomes smaller than the threshold,

test is ended up by taking K̂ = M . You can examine Sec.4.4 for an application

of F-test for this type of problem.

3.3.3 Type III

Di�erent than Type I case, model orders of the actual signals are also unknown.

This problem includes both segmentation (Type I) and model order selection

(Type II) problem. Model orders are estimated �rst. To estimate parameters of

signal #1, the longest possible window is taken from beginning of the observa-

tion. If there is a priori information about N ′, it should be used to decide the

proper window length. It should be noted that this window has to exclude obser-

vations from the second signal. Parameters of the �rst observation is estimated

using the approach de�ned for Type II problem. Then the solution approach for

Type I problem is applied.Initially, the lower order model with order M stated

in Type I approach is formed by the estimated model of signal #1. On the other

hand, the higher order with orderMH has to include an information about model

#2 in addition to model #1. At that moment, model order of the second signal

is also unknown. The lowest possible order can be assumed for model #2 and

the higher model (MH) is formed as if this assumption is valid. At that moment,

N ′ point shown in Figure 2.1 is estimated. The approach explained for Type I

problems is used to estimate N ′. Now, parameters of model #2 can be estimated

properly using the approach explained in Type II. After �nishing parameter es-

timation of model #2, N ′ may be estimated using the Type I approach again

with the improved high order model (MH). Now, the higher order model can

include more parameters from model #2 after estimation of model #2.

As an alternative way, parameters of model #2 can also be estimated prior

to the application of Type I approach by taking observations from end of the
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observation vector. Two models can be pre-estimated before the application of

Type I approach.

Whole solution strategy can be expanded easily for cases where there are more

than 2 di�erent observations added consecutively in time. You can examine

Sec.4.2 and Sec.4.3 for an application of F-test for this type of problem.

3.3.4 Type IV

The suggested solution for this problem is very similar to the solution for Type

II problem. However di�erent than Type II problem, the linear signal model is

known prior to application of F-test . Instead of model order, analysis window

for the preselected model should be found.

The linear model given in (2.33) is used as the lower order model (M) for F-test.

A linear model which covers the model given in (2.33) and approximates s better

than x1, i.e., lowers the error de�ned in (2.34) is used as the higher order model

(MH). An initial value is selected for N ′ shown in Figure 2.3. F-test is applied

for selected values. If F < threshold condition is satis�ed it implies that s can

be approximated �good enough� as x1 for the �rst N ′ points. N ′ is increased

and F-test is applied for new analysis window. If F ≥ threshold condition is

satis�ed it implies that x1 does not approximate s for the �rst N ′ points �very

well�. Since the goal is �nding maximum N ′ value where s can be approximated

with x1 �well enough�, it is decided that previously tested window is suitable

for that purpose. Previously tested N ′ value is the largest possible value that

makes F < threshold condition possible. Finally, parameters given in (2.33)

can be estimated by using the selected observations.

This problem can be thought also as observation of a signal in a linear space

under not only AWGN but also AWGN plus a bias given in (2.34). Depending

on the signal, noise and bias levels, assuming that the signal is observed under

AWGN and ignoring bias may be reasonable at the expense of parameter esti-

mation accuracy. You can examine Sec.4.1 for an application of F-test for this

type of problem.
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In the next chapter, these suggested methods will be supported by di�erent

example problems.
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CHAPTER 4

APPLICATION EXAMPLES

In this chapter, the F-test based solution methods for �ve di�erent example

problems are demonstrated. Since the Type I problem is actually part of the

Type III, an example for the Type I problem is not given separately.

4.1 Zero-Crossing Point Estimation (Problem Type: IV)

This problem is about estimation of zero-crossing point of a continuous function

from its noisy observations in discrete time. This is the �rst example problem

examined during thesis work and it represents the behaviour of F-test clearly.

This example was also brie�y mentioned in a previous work [35].

Here, t0 values which satisfy the 0 = f(t0) condition are called zero-crossing

points of a real function f(t). For example, a line function has a single zero-

crossing point but higher order polynomials may have more than one zero-

crossing points or none. In this problem, it is assumed that function of interest

has at least one zero-crossing point within a known interval.

Firstly, let us consider the zero-crossing point estimation problem particularly

for a line function. Continuous time expression of a line is given as

x(t) = at+ b = a(t− t0),

where

t0 = − b
a
.
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Continuous time signal can be expressed in discrete time as

x[n] = an+ b = a(n− n0).

This signal is sampled at t values which satis�es the

n = t where n+ 0.5 is an integer

rule. This rule is selected to simplify the following equations. Therefore, the

n0 , t0 (4.1)

equality becomes valid.

Similarly, the

− 0.5 ≤ n0 ≤ 0.5 (4.2)

inequality is assumed to provide relatively easy calculations.

In continuous time it is assumed that the signal is observed under AWGN as

y(t) = x(t) + w(t) = a(t− t0) + w(t).

Here, y(t) and w(t) represents the observed signal and noise, respectively. It

also can be written as

y[n] = x[n] + w[n] = a(n− n0) + w[n] (4.3)

in discrete time.

n0 should be estimated as n̂0 by using y[n]. Considering the equality given

in (4.1), the t̂0 = n̂0 equality holds. The number of available observations is

denoted by N .

Two assumptions given as

nN = −n1, (4.4)

ni+1 = ni + 1 where 0 < i ≤ N (4.5)

are made to simplify calculations.
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The y vector de�ned as

yN×1 ,


y[n1]

y[n2]
...

y[nN ]


is the observation vector. The vectors x and w can be de�ned similarly. Each

wi term in the w vector is an independent random variable with ∼ N(0, σ2)

distribution.

Equation (4.3) can be written as

y = x+ ω = Ap+ ω

using vector notation. Also A matrix and p vectors can be represented for this

problem as follows

AN×2 ,


n1 1

n2 1
...

...

nN 1

 ,

p2×1 ,

a
b

 .
After LS solution is applied, p̂ is found. n̂0 can be found as

n̂0 = − b̂
â
.

The Cramér�Rao Lower Bound for n̂0 is given in as

CRLB =
σ2

Na2

(
1 +

12n2
0

N2 − 1

)
.

Derivation of the CRLB expression is given in Appendix A. From this expression

it can be seen that the CRLB of n̂0 which shows the minimum possible variance

of n̂0 depends on many problem variables. One of them is N , the number of

observations. As N increases, the CRLB decreases. This is also an intuitive

result. An increase in the number of observations decreases the e�ect of noise

on estimation. It should be noted that this is true since there is not any model

mismatch.
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Up to that point, estimation of the zero-crossing point of a line function observed

under AWGN was studied. Same concepts will be given for sinusoidal signals

with the help of Figure 4.1. General expression of a continuous time sinusoidal

signal is given in as

s(t) = A sin 2πf(t− t0). (4.6)

A and t0 terms shown in the equation (4.6) represent amplitude and zero-crossing

point of sinusoidal signal, respectively. An example signal is shown in Figure 4.1

when A =
√

2 and t0 = 0.3.
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Figure 4.1: An Example Sinusoidal Signal

Similar to line function case, sinusoidal signal is also observed under AWGN and

sampled at fs frequency. For discrete time indices, in addition to the relations

given in (4.4), (4.5),

n = t× fs where n+ 0.5 is an integer

is valid. Discrete time signal can be written as

s[n] = A sin (2πF (n− n0))

while the inequality given in equation (4.2) is still assumed.
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Using the previously given de�nitions, the followings can be written

n0 = t0 × fs,

F ,
f

fs
,

Ω , 2πF = 2π
f

fs
,

y[n] = s[n] + w[n].

As an example, observation signal (y[n]) for SNR = 20 dB case and the actual

signal (s[n]) is shown in Figure 4.2. Similar to line function case, zero-crossing

point of the sinusoidal signal shown in Figure 4.2 is to be estimated.
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Figure 4.2: Noisy and Noiseless Sinusoidal Signals

One possible approach for �nding zero-crossing point of a sinusoidal signal is

to �t a straight line to the two samples with di�erent signs around the zero-

crossing point [24].Then, the zero-crossing point of the �t line is used as estimate

of the zero-crossing point of the sinusoidal signal. This approach assumes that

the signal is sampled �fast� enough such that a simple line �t is su�cient to

accurately determine the zero-crossing point. Validity of this approach can be
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seen from the Taylor series expansion given as [32]

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1. (4.7)

Equation (4.7) can be rearranged as

sin Ωn = Ωn+
∞∑
k=1

(−1)k

(2k + 1)!
(Ωn)2k+1 (4.8)

for discrete time signals. Ωn term in (4.8) shows the line component of the

Taylor series and the remaining terms represents the higher order polynomials.

The line component is represented as

l(Ωn) , Ωn

and the approximation error is given as

ε(Ωn) , sin(Ωn)− l(Ωn).

RMSE(Ω, N) term de�ned as

RMSE(Ω, N) ,

√√√√ 1

N

N/2∑
n=−N/2

[
ε′
(

Ω

[
n− 1

2

])]2

(4.9)

is the root-mean-square of approximation error. Plot of l(Ωn) ve ε(Ωn) for the

sinusoidal shown in Figure 4.1 are shown in Figure 4.3. RMSE(Ω, N) is shown

in Figure 4.4 for the same signal.

Suppose that one decides to use line �tting approach to estimate the zero-

crossing point of a sinusoidal signal. Figure 4.3 and 4.4 shows that |ε(Ωn)|,
which is the absolute value of approximation error, increases as n increases. It

is clear that line approximation introduces an estimation error even for noise-

less case. This error is caused by model mismatch between the line and the

sinusoidal signal and it will be shown up in the zero-crossing estimates as bias.

This problem �ts to the scenario given for Type IV problems. N ′ shown in

Figure 2.3 should be estimated �rst. Then the �rst N ′ points of observation

vector are considered as observations from a line function under AWGN. A
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Figure 4.3: Sinusoidal Signal, Line Component and Approximation Error
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Figure 4.4: RMSE due to Line Approximation for Di�erent Window Lengths

straight line is �tted to these observations and the zero-crossing point of the

�tted line is considered as n̂0.

This N ′ value may be chosen without the proposed method by using only fre-

quency information. In that problem, the frequency is assumed to be unknown.
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If discrete time frequency (F ) is low, signal can be considered to be sampled

�fast�. In that case more than 2 points around the zero-crossing point should be

used for estimation to increase the accuracy since as frequency decreases more

observations tend to lie on a line, approximately. When the frequency is high,

less number of observations should be used for line �tting in order to keep the

model mismatch at a reasonable level. The question is that how many samples

should be used around the zero-crossing point to �t a line? This problem is

illustrated in Figure 4.5.
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Figure 4.5: Illustration of Analysis Window Length Selection

As explained before, the F-test based approach for Type IV problem needs two

nested models with order M and MH . For that problem, M = 2 and the lower

order model is a line model. The higher order model is chosen as a polynomial

function with degree 3 which makes MH = 4. The reason behind this choice is

shown below. Taylor series expansion given as

sin Ωn = Ωn− 1

6
(Ωn)3 +

∞∑
k=2

(−1)k

(2k + 1)!
(Ωn)2k+1

shows that the lowest order term after Ωn term is (Ωn)3 term.
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The solution approach de�ned for Type IV problems is used with minor modi-

�cations. In order to get symmetrical points around the zero-crossing point, N ′

is increased by 2 in each step. Since MH = 4, the initial value of N ′ should be

greater than 4 and to keep symmetry around the zero-crossing point it is taken

as 6. Suppose that F < threshold condition is true for the �rst run. It means

that a polynomial with order 1 (line) �ts �rst 6 points su�ciently �good� as a

polynomial with order 3. Then the same test is done by using 8 points around

the zero-crossing point. If F < threshold condition is still satis�ed, test is re-

peated for 10 points. Suppose that F ≥ threshold condition becomes true when

test is done using 10 points. In that case, the higher model �ts 10 observations

�signi�cantly� better than the lower model. Approximating 10 points around

the zero-crossing point as a single line is not a good idea. Therefore, 8 points

should be used for line �tting and the zero crossing point of this line can be

taken as n̂0.

Suppose that F ≥ threshold condition is satis�ed when N ′ = 6. In that case

a line is �t to 4 points around the zero-crossing point. Especially for higher

frequencies, the best estimation results are obtained when the only 2 points are

used for line �tting. Using 4 points instead of 2 worsens the estimation perfor-

mance. As a minor modi�cation, line �t is done by taking 2 not 4 points when

F ≥ threshold and N ′ = 6 conditions are satis�ed. By doing so, the proposed

method may give estimates as accurate as the classical 2 points approach espe-

cially for high frequencies. Disadvantages of this modi�cation is that for some

medium frequencies usage of 4 points may be a better choice than usage of 2

points. However with this modi�cation, the proposed method never selects 4

points.

Depending on SNR and frequency, F may always be smaller than threshold for

all N ′ values for a speci�c observation. One may want to limit the number of

points used by line estimation independent from the F-test result. A variable

called Nusedmax is de�ned for that purpose. If the proposed method can't

decide a proper N ′ value until it reaches Nusedmax, test is terminated and

Nusedmax points are used for estimation. This may become useful if there is a

priori information about the maximum value of frequency of signal of interests.
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Independent from the F-test result, it may be used to avoid the cases where the

points around negative and positive peaks of the sinusoidal are treated as lying

on a straight line. Flow chart of the modi�ed approach is shown in Figure 4.6.
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Figure 4.6: F-test Based Proposed Algorithm for Analysis Window Length Se-
lection
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4.1.1 Simulation Results

Comparison between the classical 2-points approach and the F-test based ap-

proach is given for di�erent scenarios with help of Monte Carlo simulation re-

sults. Monte Carlo run number is denoted by MCnum. MCnum is taken as 105

for each scenario. RMSE shown in the following �gures is calculated using the

RMSE =

√√√√ 1

MCnum

MCnum∑
i=1

(n0 − n̂0i)
2

relation where n̂0i denotes the estimation for ith run. Notice that this RMSE

de�nition is di�erent from the de�nition given in (4.9). Nusedmax is taken as

16 for all scenarios.

4.1.1.1 Scenario I

Figure 4.7 shows RMSE values of both approaches for di�erent frequencies. For

each frequency value, new Monte Carlo simulation is run. pfd = 0.1 is taken for

this scenario.
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Figure 4.7: Error Comparison Between The Classical and The Proposed Method

Two methods perform the same for high frequencies. This is because the pro-
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posed method always choose to use 2 points for line �tting at these frequen-

cies. Figure 4.9 shows the histogram of lengths (N ′) of selected windows when

Ω = 0.5π rad. This histogram shows that the proposed method always takes

N ′ = 2.
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Figure 4.8: s[n] when Ω = 0.5π
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Figure 4.9: Percentage of The Number of Selected Samples by The Proposed
Method
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This and the following simulation results are obtained when SNR = 35 dB.

However, one of the simulations is repeated for Ω = 0.5π rad case when SNR

= 0 dB to show the e�ect of SNR on the performance. As it can be seen from

Figure 4.10, F-test fails to select correct number of points at low SNR. For this

frequency, 2-points should be selected for line approximation as it can be seen

from Figure 4.8. As it is stated in Chapter 3, SNR value should be relatively

high for proper operation of the F-test.
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Figure 4.10: Percentage of The Number of Selected Samples by The Proposed
Method when SNR = 0 dB

When Ω = 0.125π rad, the proposed method selects N ′ = 6 for more than 10%

of experiments as shown in Figure 4.12.

When Ω = 0.08π rad, the proposed method starts to select N ′ = 8 in addition

to 6 points as shown in Figure 4.14. This provides lower RMSE values compared

to the classical 2-points approach.

When Ω = 0.0025π rad, the proposed method selects 16 points most of the time

as it can be seen from Figure 4.16. Notice that Nusedmax is also 16 for that

problem.
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Figure 4.11: s[n] when Ω = 0.125π
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Figure 4.12: Percentage of The Number of Selected Samples by The Proposed
Method
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Figure 4.13: x[n] when Ω = 0.08π
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Figure 4.14: Percentage of The Number of Selected Samples by The Proposed
Method
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Figure 4.15: s[n] when Ω = 0.025π
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Figure 4.16: Percentage of The Number of Selected Samples by The Proposed
Method
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4.1.1.2 Scenario II

Similar experiments are repeated for by taking pfd = 0.9. In that case, threshold

has lower values than the previous case. F becomes F ≥ threshold at lower N ′

values. Thus, the proposed method tends to select lower N ′ values. RMSE value

for pfd = 0.9 case is shown in Figure 4.17. Since the proposed method selects

lower N ′ values, RMSE value of the proposed method is close to RMSE value

of the classical 2-points method.
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Figure 4.17: Error Comparison Between The Classical and The Proposed
Method

Larger N ′ values are chosen for low frequencies as seen previously. Even for low

frequencies, the proposed method chooses 2-points 90% of the time as seen from

Figure 4.18 when pfd = 0.9. In that case the maximum value of N ′ is 6 where

it was 16 for the pfd = 0.1 case.
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Figure 4.18: Percentage of The Number of Selected Samples by The Proposed
Method

4.1.1.3 Scenario III

Lastly, simulations are repeated when pfd = 0.01. In that case threshold reaches

the highest value among three scenarios. As threshold increases N ′ value se-

lected by the proposed method increases. RMSE graph is given in Figure 4.19

for pfd = 0.01. N ′ value tends to increase so much that especially for high fre-

quencies the proposed method does not recognize model mismatches and uses

wrong number of points for line approximation.

This example is given to demonstrate the proposed method for the type IV

problem. Also, e�ects of pfd and SNR value on performance are demonstrated

by using three di�erent values. As stated in the previous chapter, as pfd in-

creases threshold deceases. �False decision� probability of F-test should not be

confused with performances of the suggested algorithms. For example, 2 points

are selected with ∼ 90% probability when pfd = 0.9 as shown in Figure 4.18.

However, it does not mean that selection of 2 points is wrong. Value of the pfd

changes behaviour of the F-test. Depending on application, change in behaviour

a�ects the overall performance di�erently.
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Figure 4.19: Error Comparison Between The Classical and The Proposed
Method
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Figure 4.20: Percentage of The Number of Selected Samples by The Proposed
Method
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4.2 Segmentation of Multi Tone Signals (Problem Type: III)

As a demonstrative example for the type III problem, segmentation of multi

tone signals is selected. A multi tone signal with length N is expressed as

s[n] =


T∑
t=1

T (n, n1t, n2t, At,Ωt,Φt) 0 ≤ n ≤ N − 1

0 otherwise

(4.10)

where

0 ≤ n1t, n2t ≤ N − 1 , ∀t,

T ≥ 1,

T (n, n1, n2, A,Ω,Φ) ,

A sin(Ωn+ Φ) n1 ≤ n ≤ n2

0 otherwise.
(4.11)

The signal s[n] is generated by adding up tones with di�erent or not amplitude,

frequency, phase, start and stop times. One interest of signal processing area is

the characterization of this kind of signals. The only constraint on s[n] is that

there is at least one non-zero tone component at any time instance. One may

want to plot spectrograms of multi tone signals. In that problem amplitude(A),

frequency(Ω), phase(Φ) , start(n1) and stop times(n2) of signals are assumed to

be unknown. The goal is to improve the frequency resolution in spectrogram

plots.

Let us review some basics of spectrogram before the application of F-test. At

this moment, the observation vector is assumed to be noiseless.

Spectrogram is generated by plotting magnitude of DFT of windowed data. A

vector (segment) with length Nwindow is taken from the beginning of the ob-

servation vector. The length of the second segment is also Nwindow. Noverlap

samples are taken from end of the �rst segment for second segment. In other

words, segments are overlapped. This segmentation procedure is repeated as

shown in Figure 4.21. We call it as classical segmentation. It is illustrated

in . After segmentation, NDFT point DFT is calculated for each segment. In

practice, generally DFT is calculated using FFT. Magnitude plots of DFTs are
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placed side by side in time to generate spectrogram plot. Overlapping provides

smooth transitions in spectrogram plot.

Figure 4.21: Illustration of The Classical Segmentation

As an example, let us consider s[n] generated by using (4.10), (4.11) and the

parameters given in Table 4.1. Spectrogram of this signal is shown in Figure 4.22.

This is generated by taking Nwindow = 1024, NDFT = 1024 and Noverlap =

512. It can be seen that there are tone changes around 20000 and 25000 at time

axis.

Table 4.1: Parameters of s[n], N = 30000

Tone # / Parameter n1 n2 A Ω Φ

1 0 20000 1 0.3π 0
2 20000 30000 1 0.2π 0
3 25000 30000 1 0.23π 0

Figure 4.23 shows spectrogram of the same signal with di�erent spectrogram

parameters: Nwindow = 64, NDFT = 64 ve Noverlap = 32. Unlike the

previous spectrogram shown in Figure 4.22, it is not possible to distinguish

existence of two tones after 25000th sample visually. Similarly, the plot is spread

over frequency axis for all tones. Although an accurate frequency estimation is

much more di�cult than the previous case, the tone transition points are much

more clear than Figure 4.22.

Value of Nwindow parameter has direct impact on spectrogram plots. Basics of

DTFT should be analyzed to understand the di�erences between two plots. DFT
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Figure 4.22: Spectrogram of Example Signal with The Classical Approach Using
Long Segments

0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
Spectrogram in dB Scale NDFT=64 Nwindow=64 Noverlap=32

Sample Index

 

F
re
q
u
en
cy

(×
π
ra
d
)

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 4.23: Spectrogram of Example Signal with The Classical Approach Using
Short Segments

can be thought as sampled version of DTFT between 0 and 2π rad frequencies

with 2π/NDFT rad steps [2]. As it will be explained later, main reason behind

the di�erences between two spectrograms is windowing e�ect not the relations
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between DTFT and DFT functions. Therefore, explanations are given by using

concepts related with DTFT.

DTFT of an in�nite length signal x[n] is found as

S(Ω) =
∞∑

n=−∞

s[n]e−jΩn.

Let us consider an in�nite length sinusoidal signal given as

s[n] = cos(Ωsn) − π ≤ Ωs ≤ π

and its DTFT can be written as

S(Ω) = πδ(Ω− Ωs) + πδ(Ω + Ωs) − π ≤ Ω ≤ π.

The classical segmentation for spectrogram generation can be expressed math-

ematically as

s′[n] =

N−1
2∑

n=−N−1
2

s[n] = s[n]w[n],

w[n] ,

1 |n| ≤ N − 1

2

0 otherwise
(4.12)

where s′[n] represents one of the segments with length N + 1.

Using DTFT properties [2] S ′(Ω) can be written as

S ′(Ω) =
∞∑

n=−∞

s′[n]e−jΩn = S(Ω) ∗W (Ω) =
1

2π

∫ π

−π
S(Ω− λ)W (λ)dλ. (4.13)

Equation given in (4.12) is known as rectangular window function and its DTFT

given as

W (Ω) =

sin

(
N

Ω

2

)
sin

(
Ω

2

) if N is odd

is a well known function [25].

Although this equation is valid when N is an odd number, an extra phase term

is added when N is an even number. Since phase of DTFT is discarded to plot
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spectrogram and only magnitude of DTFT is used, DTFT for odd number case

is considered in order to get rid of extra phase term to simplify expressions [25].

Plot of W (Ω) for N = 17 case is shown in Figure 4.24. W (Ω) has null points at

Ω = 2π/N frequencies. Main lobe width of the rectangular window function is

4π/N .
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Figure 4.24: Normalized DTFT of Rectangular Window with Length 17

Equation (4.13) can be continued as

S(Ω) =
1

2
[W (Ω− Ωx) +W (Ω + Ωx)]

and as it can be seen from this equation, DTFT of a �nite length sinusoidal is

equivalent to shifting DTFT of the window function to the frequency of sinu-

soidal signal which is known as modulation property. Magnitudes of DTFT of

rectangular windows with N = 64 and N = 1024 are plotted in 4.25. As it can

be seen from the �gure, as N increases main lobe width decreases. If it assumed

that NDFT is �xed, energy of sinusodial signal spreads over less number of

DFT points as N increases. This improves both frequency estimation accuracy

for single tone case and frequency clearance between tones for multi tone case.

The problem which is de�ned by parameters given in Table 4.1 contains single

tone up to 20000th point. As it can be seen from Figure 4.22 and 4.23, frequency
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Figure 4.25: E�ect of Window Length on DTFT Results

resolution increases as Nwindow increases. Di�erent from Figure 4.25, there is

an extra parameter involved in spectrogram generation: NDFT . However, this

is not the reason of the mentioned di�erence. This parameter only changes

the sampling interval of DTFT. As NDFT increases, sampling interval in the

frequency axis decreases. However, the di�erence shown in Figure 4.25 is purely

due to DTFT properties. Sampling these DTFT functions more and more closely

does not improve the result. To show this, Figure 4.23 is plotted again in

Figure 4.26 by takingNDFT = 1024 as in Figure 4.22. The frequency resolution

problem still exists even if NDFT is same as the condition where frequency

resolution is �ne as in Figure 4.22.

Taking long segments for spectrogram generation improves the frequency resolu-

tion. However as it can be seen from Figure 4.22 and Figure 4.23 around 20000th

and 25000th sample, tone transitions can't be resolved in time axis very well.

On the other hand, transitions are resolved in time axis when shorter segments

are used as shown in Figure 4.26. The reason behind is that when segments are

long, they include higher number of samples and the distance between two ad-

jacent segment is big. For example, for Nwindow = 64 and Noverlap = 32 case

each segment contains 64 samples and the distance between each of them is 32
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Figure 4.26: E�ect of NDFT Parameter on The Frequency Resolution

samples whereas for Nwindow = 1024 and Noverlap = 512 case each segment

contains 1024 samples and the distance between each of them is 512 samples.

Since DFT is computed for each individual segment, time resolution of the long

segments is lower than the short segments. Lower time resolution causes time

ambiguity around tone transition points.

In summary, long segments and short segments increase the frequency and the

time resolution, respectively.

If spectrogram of the example signal was generated by using not equal segments

like, �rst segment was taken between 0th and 20000th sample, second one was

taken between 20000th and 25000th sample and the last one was taken between

25000th and 30000th, spectrogram would be like in Figure 4.27 and Figure 4.28.

Notice that the colormap is di�erent from the previous spectrograms for visual

simplicity. Also, there is no overlap between these three segments. Segmentation

is illustrated in Figure 4.29. We call it as dynamic segmentation.

If tone changes are detected and segments were taken between transition points,

spectrograms have better frequency resolutions than classical spectrograms. F-

test is used to estimate the tone transition points. After these points are es-
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Figure 4.27: Spectrogram of Example Signal Using The Dynamic Segmentation
(3 Segments), View #1
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Figure 4.28: Spectrogram of Example Signal Using The Dynamic Segmentation
(3 Segments), View #2

timated, (dynamic) segments and spectrogram plots are generated. Similar to

the previous cases, s[n] is observed under AWGN as y[n].

This problem is similar to Type III problem but the solution given for Type

III is modi�ed a lot. Two nested and linear models should be determined to
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Figure 4.29: Illustration of The Dynamic Segmentation

apply F-test. However, there is no prior information about added tones, so the

necessary ones should be estimated. Rather than giving F-test approach as one

stage, it is divided into four stages.

First of all, proper linear models should be selected. First stage �nds the model

candidates. The �ow is illustrated in Figure 4.30. This stage is called as model

pre-selection algorithm.

Logic behind the model pre-selection algorithm is �nding frequencies that have

high DFT values in terms of magnitude. In that stage, a search window with

length Nsw is selected and shifted through the observation vector. For each shift,

DFT is taken and possible tones are determined. It is thought that tones with

higher DFT magnitudes have higher probability of existence. If there is a priori

information about frequency components, the maximum number of allowable

tones can be limited in each search window. In the next section, validity of

these pre-selected tones is tested.

The pre-selection algorithm uses following parameters:

• Nsw: sw is abbreviation for Search Window. It shows the length of search

window. This length a�ects the frequency resolution for searching and

the �nal segmentation performance. If search window is considered as

rectangular window, two tones become separable when their frequencies

are separated by more than 2π/Nsw rad.

• Nsdft: sdft is an abbreviation for Search DFT. Nsdft point DFT is taken
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Figure 4.30: The Proposed Model Pre-Selection Algorithm

at each search window. Since DFT peaks are used for the pre-selection

algorithm, at least one DFT bin should exists between two separable fre-
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quencies. Therefore, this parameter should be at least double of the desired

search frequency resolution between 0 and 2π.

At second stage, validity of the pre-selected tones is checked using F-test. This

is similar the approach used for Type II problem. The �ow is illustrated in

Figure 4.31. This stage is called as model validity stage.

For each search window, the pre-selected tones are tested using the Type II

approach. Consider the F-test done for the ith search window. Initially, F-test

checks whether this window contains a single or dual tones. To do this, the

lower order model is constructed using the frequency in possible_tones(i, 1).

This is the frequency with the highest DFT magnitude for the ith search win-

dow. The higher order model is constructed using two tones with frequencies

possible_tones(i, 1) and possible_tones(i, 2). A matrix for the �rst test is given

as

Ai
M =

[
ai1 ai1

]
for the lower order (M) model and as

Ai
MH

=
[
ai1 ai1 ai2 ai2

]
for the higher order (MH) model. In that case M = 2 and MH = 4. Notice that

di�erent from the previous cases, A matrices (and also p vectors) have complex

terms. Although previous expressions given for real cases, replacing transpose

matrices with Hermitian matrices is su�cient to apply all previous results and

comments about RSS values and F ratios for complex cases.

In general, elements of A matrix can be written as

ail =


ai1,l

ai2,l
...

aiNsw,l


where

aik,l = ej×possible_tones(i,l)×k.
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Figure 4.31: The Proposed Model Validation Algorithm

If F-test concludes that the dual tone model is �more suitable� than the single

tone model for the ith search window, then the dual tone and the triple tone
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models are compared. In that case, A matrix can be written as follows

Ai
M =

[
ai1 ai1 ai2 ai2,

]
Ai
MH

=
[
ai1 ai1 ai2 ai2 ai3 ai3

]
for M = 4 and MH = 6. If F-test concludes that the triple tone model is �more

suitable� than the dual tone model for the ith search window, the quadruple

tone model is tested against the triple tone model until the correct model order

is found. It is the algorithm given for Type II problem.

The validity algorithm uses the following parameter:

• Nt, Number of maximum tones : It is the maximum number of tones that

can be found in a search window. If F-test couldn't verify tones even if the

number of tested tones reaches that parameter, number of Nt tones are

assumed to exist in that search window and test is ended for that particular

search window. If there is a priori information about the possible number

of tones at a time instant, this information can be used for Nt selection.

After the validation stage, a post processing is done to improve the validation

results. At least, F-test may give wrong decisions with pfd probability. These

decisions may be reduced using some a priori information about the problem if

available. This stage is not related with F-test and is not subject of this thesis

work. However, it is given to show that F-test results may be improved further

by some post processing depending on the problem speci�cations.

Due to nature of F-test, it may found some tones with very short durations.

For example, tone with frequency 0.1π with 5 samples duration may not be a

practical case. These impractical �glitchy� results may be eliminated by utiliza-

tion of some simple methods. The post-processing algorithm is illustrated in

Figure 4.32.

The proposed post-processing algorithm uses the following parameter:

• Nmp, Minimum Period : A tone should be detected at least Nmp times of
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Do this for all estimated tones

Figure 4.32: The Proposed Post-Processing Algorithm

its period to declare its existence. If there is a priori information about

the signal it can be used for Nmp selection.

The last stage is generation of dynamic segments and resultant spectrogram

using the post-processed tone pro�le. The �ow is shown in Figure 4.33. If a

tone disappears or a new tone appears, a new segment should start at that

instant. After segmentation, spectrogram is plot similar to the classical case.

DFT is taken for each spectrogram and plotted side by side in time. Di�erent

from the classical approach, there is no overlapped samples between segments.

Notice that the �nal frequency resolution of dynamic spectrogram should not be

confused with Nsw and Nsdft parameters used in the model pre-selection section.
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The number of DFT points is selected as length of each segment which is gen-

erally larger than the length of search window to have resolution improvements.

Finish

Start

Process estimated_tones_filtered(i,:) in time axis

If any detected tone disappears
OR

a new tone is detected
at a a time instance, new segment shoud start

Create spectrogram using this segments

Figure 4.33: The Proposed Dynamic Spectrogram Generation

The overall proposed algorithm is shown in Figure 4.34.

Performance of the proposed method is demonstrated using example scenarios

at the next section.
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Finish

Start

Get observation signal y[n]

Estimate linear models will be used in F−Test

Post process estimation result to increase accuracy

Create segments for spectrogram

y[n]

possible_tones(:,:)

estimated_tones_filtered(:,:)

Decide active tones using F−Test

estimated_tones(:,:)

Figure 4.34: The Proposed Dynamic Segmentation Algorithm

4.2.1 Simulation Results

4.2.1.1 Scenario I

Problem De�nition
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Table 4.2: Problem Parameters for Scenario I

Parameter Value

N 4000
Nsw 96
Nsdft 96
Nt 4
Nmp 10
SNR 60 dB
pfd 0.1

Table 4.3: Tone Parameters for Scenario I

Tone # / Parameter n1 n2 A Ω Φ

1 0 1000 1 0.05π Random
2 1001 2000 1 0.12π Random
3 2001 3000 1 0.22π Random
4 3001 4000 1 0.32π Random

Results

Ideally, indices of dynamic segments should be at 1001, 2001 and 3001. The

proposed method �nds starting indices of dynamic segments at 942, 981, 1943 ,

1945, 2948, 2985. Although the proposed method couldn't �nd the ideal indices

exactly, it starts new segments around them.

Spectrogram shown in Figure 4.35 is generated using the classical segmentation.

Figure 4.36 shows the spectrogram generated using dynamic segments. Even

if dynamic segmentation is not the same as the ideal one, the dynamic spec-

trograph increases the frequency resolution. Figure 4.37 shows the number of

actual and detected tones using F-test.

80



500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
Spectrogram in dB Scale NDFT=256 Nwindow=256 Noverlap=128

Sample Index

 

F
re
q
u
en
cy

(×
π
ra
d
)

−140

−120

−100

−80

−60

−40

−20

0

Figure 4.35: Classical Spectrogram
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Figure 4.36: Dynamic Spectrogram
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Figure 4.37: True and Estimated Number of Tones
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4.2.1.2 Scenario II

Problem De�nition

Table 4.4: Problem Parameters for Scenario II

Parameter Value

N 30000
Nsw 24
Nsdft 64
Nt 4
Nmp 2
SNR 60 dB
pfd 0.1

Table 4.5: Tone Parameters for Scenario II

Tone # / Parameter n1 n2 A Ω Φ

1 0 10000 1 0.20π Random
2 7500 22500 1 0.80π Random
3 15000 22500 1 0.25π Random
4 22501 30000 1 0.30π Random

Results

Ideally, indices of dynamic segments should be at 7500, 10001, 15001, 22501.

The proposed method �nds starting indices of dynamic segments at 7419, 9989,

14933, 22422, 22444, 22483, 22492. Although the proposed method couldn't �nd

ideal indices exactly, it starts new segments around them.

Spectrogram shown in Figure 4.38 is generated using the classical segmentation.

Figure 4.39 show spectrogram generated using dynamic segments. Even if the

dynamic segmentation is not same as the ideal one, the dynamic segmentation

increases the frequency resolution. Figure 4.42 show the number of actual and

detected tones using F-test.

From Figure 4.39, it may not be easy to see the detected frequencies due to the

problems related with the MATLAB renderer, Figure 4.40 and Figure 4.41 are

given to show the same spectrogram from di�erent angles. As it can be seen
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from these �gures, each DFT segments have sharp frequency plots.
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Figure 4.38: Classical Spectrogram

0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
Spectrogram in dB Scale Using Dynamic Segmentation

Sample Index

 

F
re
q
u
en
cy

(×
π
ra
d
)

−140

−120

−100

−80

−60

−40

−20

0

Figure 4.39: Dynamic Spectrogram, View #1
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Figure 4.40: Dynamic Spectrogram, View #2
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Figure 4.41: Dynamic Spectrogram, View #3
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Figure 4.42: True and Estimated Number of Tones
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4.3 Segmentation of FM Signals (Problem Type: III)

This example problem is similar to the segmentation of the multi tone signal

problem. This problem is based on a single tone signal which has a time varying

instantaneous frequency. For example, various FM signals, like linear, hyperbolic

FMs, have time-varying instantaneous frequencies. Since various FM pulses

are used in radar and sonar applications, these signals are specially considered

in this section [28]. The aim is improvements in the frequency resolution of

spectrograms of FM signals observed under AWGN. Let us consider the signal

given as

s(t) = A sin(θ(t)).

The instantaneous frequency of the signal s(t) is de�ned as

f(t) ,
1

2π

dθ(t)

dt
. (4.14)

It is assumed that f(t) is a continuous function and has its derivative is well

de�ned at every point. Noisy version of this signal is observed in discrete time

as

y[n] = s[n] + ω[n].

If F [n] denotes the instantaneous frequency of x[n] is discrete time, the relation

f(t) = F [tfs]fs is valid. Notice that n = tfs where fs is the sampling frequency.

Let us consider an HFM signal as an example. General equation for an HFM

signal is given in as

s(t) = cos

(
2π

b
ln (1 + bf0t) + θ0

)

b ,
f0 − f1

f0f1T
(4.15)

where f0, f1, T , θ0 in (4.15) represents start frequency, stop frequency, duration

and initial phase of FM pulse, respectively. The instantaneous frequency of the

signal given can be written as

f(t) =
f0

1 +
f0 − f1

f1T
t
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by using (4.14).

An example plot of f(t) where f0 = 300Hz, f1 = 3800 Hz, T = 5 sec, θ0 = 0 is

given in Figure 4.43. Spectrogram of s[n] which is generated by sampling s(t)

with fs = 8000 Hz is shown Figure 4.44. This is a classical spectrogram, i.e.,

lengths of segments and overlapped samples are �xed. Parameters Nwindow,

Noverlap and NDFT shown in classical spectrogram are the same as previous

de�nitions given in the multi tone segmentation problem.
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Figure 4.43: The Instantaneous Frequency of Example Signal

As it can be seen from Figure 4.43 or Figure 4.44, the instantaneous frequency

seems to be almost constant at the beginning of the pulse. It rapidly increases

at the end of the pulse. Frequency resolution of spectrogram can be increased by

taking long segments where instantaneous frequency changes slowly and short

segments where the instantaneous frequency changes rapidly. These concepts

are explained in detail in the previous problem. It is assumed that FM pulse

parameters and properties of f(t) function, like monotone increasing/decreasing,

are unknown.

The proposed approach uses the fact that instantaneous frequency is a continu-

ous function. A single segment is used while the instantaneous frequency stays

almost constant. As the instantaneous frequency starts to deviate, new seg-
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Figure 4.44: Classical Spectrogram of Example Signal

ment starts. Whole observation is dynamically segmented using this approach.

After segmentation, spectrogram is plotted as described previously. One may

also limit the minimum length of the dynamic segments. It guarantees that fre-

quency resolution of the dynamic spectrogram is as good at least as the classical

spectrogram.

The algorithm proposed for the segmentation of FM pulses is very similar to the

algorithm proposed for segmentation of multi tone signal. The blocks shown in

Figure 4.34 from begging up to the post process block are same for FM case.

The F-test based veri�cation algorithm proposed in the previous problem is used

also for FM case without any modi�cation. Last two blocks are di�erent for FM

case. New post processing algorithm is illustrated in Figure 4.45.

The following parameters are used in the segmentation algorithm:

• Wmin, Minimum Window : This is the minimum length for dynamic seg-

ments. Length of each dynamic segment is at least Wmin samples.

• Tmin, Minimum Period : Segment length should be at least Tmin times its

fundamental period.
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i = Nsw/2
pre_peak_2  = 0

segment_index (:) = 0
first_segment=1

t = number of tones in estimated_tones (i,:)

t>1

peak_1 = First frequncy in
 estimated_tones (i,:)

peak_2 = Second frequncy in 
estimated_tones (i,:)

peak_1 != pre_peak_1
AND

peak_2 != pre_peak_2

pre_peak_1  = peak_1
pre_peak_2  = peak_2

peak_1 = First frequncy in 
estimated_tones (i,:)

peak_1 != pre_peak_1

pre_peak_1 = peak_1

segment_index (i) = 1

t==1

i > L − Nsw/2 Finish

i = i + max(Wmin, Tmin * Period of peak_1 Frequency)

true

false

true

false

true

false

true

false

truefalse

i = i + 1i = i + 1

i == Nsw/2

pre_peak_1  = First frequncy in
 estimated_tones (i,:)

false

true

Figure 4.45: The Proposed Segmentation Algorithm for FM Pulses

This approach divides [0, 2π) radial frequency interval to Nsdft pieces. The

frequency resolution of dynamic spectrogram will be 2π/Nsdft rad. The proposed
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algorithm basically divides spectrogram into 2π/Nsdft rad steps and determines

which parts of observation vector can be considered as a single tone. If the

instantaneous frequency is almost constant at a speci�c part of observed signal,

it can be considered as a single constant tone.

Two rules are used to end the current segment and start a new segment:

1. Suppose, F-test veri�es that both ith and i − 1th search window contains

dual tone. In other words observation vectors in both search windows can

be modeled as summation of two tones. It is decided that current segment

should end at location of i− 1th window and new one should start at the

location of ith window if at least one of these detected frequencies is not

same for both i− 1th and ith search windows.

2. Suppose, F-test veri�es that both ith and i − 1th search window contains

singe tone. In other words observation vector in both search windows can

be modeled as single tone. It is decided that current segment should end

at the location of i− 1th window and new one should start at the location

of ith window if frequency of the single tone is not same for both i − 1th

and ith search windows.

After a new segment starts, it is not tested against a new segment for speci�c

time determined by Wmin and Tmin parameter.

Nsdft and Nsw parameters shown in Figure 4.30 e�ects lengths of segments

directly. As values of these parameters are increased, frequency resolution of

the dynamic spectrogram also increases. As resolution increases, small changes

in detected frequencies causes F-test to decide end the current segment and start

a new one more quickly.

When this stage is competed, segment_index() stores start and end points of

dynamic segments.

At the last stage, dynamic spectrogram is plotted using the dynamic segments

as shown in Figure 4.46.
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Finish

Start

Start new segment at i when segment_index(i) == 1

Create spectrogram using this segments

Figure 4.46: Dynamic Spectrogram Generation Using Dynamic Segments

The proposed algorithm is shown in Figure 4.47. As stated before, only the last

two blocks are not same for Figure 4.47 and Figure 4.34.
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Finish

Start

Get observation signal y[n]

Estimate linear models will be used in F−Test

Estimation result to determine starting points of segments

Plot spectrogram using dynamic segments

y[n]

possible_tones(:,:)

segment_index(:,:)

Decide active tones using F−Test

estimated_tones(:,:)

Figure 4.47: General Flow of The Proposed Dynamic Segmentation Approach

4.3.1 Simulation Results

4.3.1.1 Scenario I

Problem De�nition
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Table 4.6: Problem Parameters for Scenario I

Parameter Value

Nsw 128
Nsdft 256
Tmin 5
Wmin 256
SNR 60 dB
pfd 0.1
fs 8000 Hz

Interested signal is a noisy observation of HFM pulse with the instantaneous

frequency given in (4.15). Pulse parameters are given in Table 4.7.

Table 4.7: Signal Parameters for Scenario I

Parameter Value

f0 300
f1 3800
T 5
θ0 Random

Results

Figure 4.48 shows plot of f(t) given in (4.15). Classical and dynamic spectro-

gram of FM pulse are shown in Figure 4.49 and 4.51, respectively. Since the

instantaneous frequency of pulse increases rapidly at the end of pulse, length of

segments decreases. Length of segment is limited by Wmin parameter approxi-

mately after 30th segment. After that point, dynamic spectrogram looks similar

to the classical spectrogram. Figure 4.50 show the length of each segment.
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Figure 4.48: The Instantaneous Frequency of Signal, Scenario I
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Figure 4.49: Classical Spectrogram, Scenario I
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Figure 4.50: Change in Dynamic Segment Length, Scenario I
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Figure 4.51: Dynamic Spectrogram, Scenario I
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4.3.1.2 Scenario II

Problem De�nition

Table 4.8: Problem Parameters for Scenario II

Parameter Value

Nsw 128
Nsdft 256
Tmin 5
Wmin 256
SNR 60 dB
pfd 0.1
fs 10000 Hz

This example is about LFM pulse. General expression and instantaneous fre-

quency of LFM signal is given as follows

x(t) = cos

(
2π

(
f0 +

kt

2

)
t+ θ0

)
,

f(t) = f0 + kt. (4.16)

Table 4.9: Signal Parameters for Scenario II

Parameter Value

f0 2000
k 1000
T 2
θ0 Random

Results

Figure 4.52 shows plot of the instantaneous frequency given in (4.16). Classical

and dynamic spectrogram of FM pulse is shown in Figure 4.53 and 4.55, respec-

tively. Since slope of the instantaneous frequency of LFM signal is constant,

F-test selects the length of each segment almost same. Figure 4.54 shows the

length of each segment.
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Figure 4.52: The Instantaneous Frequency of Signal, Scenario II
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Figure 4.53: Classical Spectrogram, Scenario II
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Figure 4.54: Change in Dynamic Segment Length, Scenario II
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Figure 4.55: Dynamic Spectrogram, Scenario II
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4.3.1.3 Scenario III

Problem De�nition

Table 4.10: Problem Parameters for Scenario III

Parameter Value

Nsw 128
Nsdft 256
Tmin 5
Wmin 256
SNR 60 dB
pfd 0.1
fs 8000 Hz

This example is about EFM pulse. General expression and the instantaneous

frequency of EFM signal is given as follows

x(t) = cos

(
2πf0

(
kt

ln k

)
+ θ0

)
,

f(t) = f0k
t. (4.17)

Table 4.11: Signal Parameters for Scenario III

Parameter Value

f0 2000
k 1.8206
T 5
θ0 Random

Results

Figure 4.56 shows plot of the instantaneous frequency given in (4.17). Classi-

cal and dynamic spectrogram of FM pulse is shown in Figure 4.57 and 4.59,

respectively. Figure 4.58 show the length of each segment. As slope of the in-

stantaneous frequency increases, length of segments decreases. The length of

segments are limited approximately after 50th segment by Wmin parameter.
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Figure 4.56: The Instantaneous Frequency of Signal, Scenario III
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Figure 4.57: Classical Spectrogram, Scenario III
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Figure 4.58: Change in Dynamic Segment Length, Scenario III
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Figure 4.59: Dynamic Spectrogram, Scenario III
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4.3.1.4 Scenario IV

Problem De�nition

Table 4.12: Problem Parameters for Scenario IV

Parameter Value

Nsw 128
Nsdft 256
Tmin 5
Wmin 256
SNR 60 dB
pfd 0.1
fs 8000 Hz

This example is about QFM pulse. General expression and the instantaneous

frequency of QFM signal is given as

x(t) = cos

(
2πf0

(
a

3
t3 +

b

2
t2 + ct

)
+ θ0

)
,

f(t) = at2 + bt+ c. (4.18)

Table 4.13: Signal Parameters for Scenario IV

Parameter Value

a -862.5
b 3425
c 100
T 4
θ0 Random

Results

Figure 4.60 shows plot of the instantaneous frequency given in (4.18). Classical

and dynamic spectrogram of FM pulse is shown in Figure 4.61 and 4.63, respec-

tively. Figure 4.62 show the length of each segment. Most of time the length

of segments are limited by Wmin parameter. The length of segments is only

above Wmin limit around 2 seconds where slope of the instantaneous frequency

decreases and changes sign.
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Figure 4.60: The Instantaneous Frequency of Signal, Scenario IV
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Figure 4.61: Classical Spectrogram, Scenario IV
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Figure 4.62: Change in Dynamic Segment Length, Scenario IV
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Figure 4.63: Dynamic Spectrogram, Scenario IV
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4.4 Model Order Selection for Prony's Method (Problem Type: II)

This problem is about signal modeling in discrete time. Impulse response mod-

eling is one of the practical modeling approaches used in signal processing area.

Impulse response expression of an LTI �lter is given as

H(z) =
Bq(z)

Ap(z)
=

∑q
k=0 bq(k)z−k

1 +
∑p

k=1 ap(k)z−k
. (4.19)

If input of this �lter is excited by v[n], the output signal s[n] can be written as

S(z) = H(z)V (z) (4.20)

in frequency domain and as

s[n] = h[n] ∗ v[n] (4.21)

in time domain.

For example, when v[n] is selected as

v[n] =

p∑
k=0

δ(n− kn0)

which is an impulse train, s[n] may be used to model a speech signal [27].

When v[n] is selected as

v[n] =

p∑
k=0

akδ(n− nk),

s[n] may be used for multipulse linear predictive coding problems [5, 7, 11,12].

In this problem, v[n] is assumed to be a unit impulse as given below

v[n] = δ[n].

In this case, equation (4.20) can be written as

S(z) = H(z)

and equation (4.21) can be written as

s[n] = h[n].
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Let us assume that q, bq(k), p and ap(k) terms in (4.19) are unknown. Length

of s[n] is assumed to be N . Once these parameters are estimated, the estimate

of s[n], i.e. ŝ[n], can be generated from these estimates using the same equality

given in (4.19). Least squares solution of this problem minimizes the RSS value

de�ned as [21]

RSS′ ,
∞∑
n=0

|e′[n]|2

where

e′[n] , s[n]− ŝ[n]. (4.22)

However, this is not a linear least squares problem and requires solutions for

set of p + q + 1 non-linear equations [14]. Instead of non-linear equations, this

problem can be solved approximately by set of linear equations. Let us consider

the case where the transfer function has no zeros and has �xed number of poles.

In this case by setting q = 0, (4.19) can be written as

S(z) =
Bq(z)

Ap(z)
=

bq(0)

1 +
∑p

k=1 ap(k)z−k
. (4.23)

This kind of signal is called as all-pole signal and widely used in signal process-

ing problems like speech signal modeling [27]. Also, many signals in practical

systems can be modeled as all-pole signals, as well [14].

Equation (4.23) can be written as

s[n] + ap(1)s[n− 1] + ap(2)s[n− 2] + . . .+ ap(p)s[n− p] = bq(0)δ[n] (4.24)

in time domain. Additionally, if signal is considered as an impulse response of a

casual �lter, s[n] = 0 is satis�ed when n < 0.

The signal s[n] can be written recursively using the characteristics of IIR �lters

as follows

ap(1)s[0] =− s[1],

ap(1)s[1] + ap(2)s[0] =− s[2],

ap(1)s[2] + ap(2)s[1] + ap(3)s[0] =− s[3],

. . . = . . . .
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These equations can be expressed in matrix form as
s[0] 0 0 . . . 0

s[1] s[0] 0 . . . 0

s[2] s[1] s[0] . . . 0
...

...
...

...




ap(1)

ap(2)
...

ap(p)

 = −


s[1]

s[2]
...

s[N − 1]

 .

Using the standard notation, they also can be written as

Ap = x. (4.25)

Estimation of unknown parameters of an all-pole signal by using the least squares

solution of (4.25) is known as Prony's method.

RSSprony ,
∞∑
n=0

|eprony[n]|2 (4.26)

where

eprony[n] , s[n] +

p∑
k=1

âp(k)s[n− k] (4.27)

is the Prony error.

Notice that the error de�ned in (4.27) is di�erent than the error de�ned in (4.22).

Linear LS solution tries to minimize RSS de�ned in (4.26). Therefore, this solu-

tion may not minimize the actual approximation error. This is a disadvantage

of Prony's solution.

After �nding p̂ by using LS approach for the equation (4.25), bq(0) becomes the

only unknown term in (4.23). One may use the

b̂q(0) = s[0] (4.28)

equation directly which can be written from (4.24). When all parameters are

estimated, estimate signal can be written as

Ŝ(z)prony =
B̂q(z)

Âp(z)
=

b̂q(0)

1 +
∑p

k=1 âp(k)z−k
.

In this equation, each âp(k) is taken from p̂. ŝ[n]prony can be found by taking

the inverse z transform of Ŝ(z)prony.
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Although (4.28) means ŝ[0]prony = s[0], this selection may cause an improper

selection of b̂q(0) if s[0] is a badly scaled value. To avoid the dependency of b̂q(0)

on a single sample, s[0], b̂q(0) can be estimated as [19]

b̂q(0) =

√√√√rs(0) +

p∑
k=1

âp(k)rs(k),

rs(k) ,
∞∑
n=0

s(n)s(n− k).

This selection rule matches not their �rst samples of both signals but their

energy [19]. It will be used to calculate b̂q(0) in the following example scenarios.

The di�erence between the actual signal and the approximated signal using

Prony's method is called as Prony approximation error and it is calculated

as

εprony[n] = s[n]− ŝ[n]prony. (4.29)

In this problem, s[n] with lengthN is observed under AWGN as y[n]. Parameters

given in (4.23) are estimated from noisy observations using Prony's method.

Observation model is expressed as

y[n] = s[n] + w[n].

To apply Prony's solution, a suitable p value which denotes the number of poles

of all-pole model should be selected.

The A and p matrices de�ned in (4.25), when the number of poles in Prony's

solution is p and p+ 1, are given as follows

Ap ,



s[0] 0 0 . . . 0

s[1] s[0] 0 . . . 0

s[2] s[1] s[0] . . . 0
...

...
...

...

s[N − 2] s[N − 3] s[N − 4] . . . s[N − p− 1]


N−1×p,

(4.30)
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pp ,


ap(1)

ap(2)
...

ap(p)


p×1,

Ap+1 =



s[0] 0 0 . . . 0 0

s[1] s[0] 0 . . . 0 0

s[2] s[1] s[0] . . . 0 0
...

...
...

...
...

s[N − 2] s[N − 3] s[N − 4] . . . s[N − p− 1] s[N − p]


N−1×p+1,

Ap+1 =



0

0

Ap 0

0
...


N−1×p+1,

(4.31)

pp+1 =



ap(1)

ap(2)
...

ap(p)

ap(p+ 1)


p×1.

As it can be seen from (4.31), Ap is nested in Ap+1 and each column is inde-

pendent from each other except some rare and special conditions. Therefore,

F-test can be used to �nd the proper p number. This case is similar to Type II

problem. For this problem, K and K̂ de�ned in Type II are denoted as p and p̂,

respectively. F-test can be applied straightforwardly to this problem as shown

in Figure 4.64.

At each iteration two nested models are compared using F-test. If F ≥ threshold,

it is decided that higher order model (MH) models the actual signal �signi�cantly

better� than the model with lower order (M). Then, each model order is in-

creased by same amount and F-test is applied until F < threshold. In that case,
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Calculate Prony error for p = i case
Calculate Prony error for p = i+1 case

F <= threshold

Calculate F ratio using these two errors

Finish

Start
i = 1

true false

p
hat = i i = i+1

i > p
max

p
hat = p

max

true false

Figure 4.64: The Proposed Model Order Selection Algorithm for Prony's Method

it is decided that the model with order M is suitable to model the actual signal,

i.e. p̂ = M . Then poles and zero are estimated as mentioned before.

In each ith iteration AM and AMH
are formed as stated previously in (4.30) and

(4.31). For each estimation, RSSprony is calculated as in (4.26). F ratio and

threshold are calculated using the formulas given in (3.1) and (3.13), respec-

tively.
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New algorithm parameter pmax is introduced as shown in Figure 4.64.

• pmax: Limits the maximum number of poles used by Prony's method. One

may want to set a upper limit for p̂ if there is a priori information about

s[n].

Since only noisy observation of the signal s[n] is available, A matrices are formed

by using y vector, not s.

4.4.1 Simulation Results

In this section, performance of the proposed method for number of pole selection

is demonstrated with di�erent scenarios. In each scenario, as many as MCNum

parameter Monte Carlo simulation are run.

The following �gures show RMSE values of Prony errors and Prony approxima-

tion errors. RMSE stands for root-mean-square error and is calculated using all

Monte Carlo simulations.

4.4.1.1 Scenario I

Problem De�nition

s[n] is generated using the parameters given in Table 4.14. Plot of the signal is

given in Figure 4.65.
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Table 4.14: Signal Parameters for Scenario I

Parameter Value

Length 96
Number of Zeros (q) 0
Zero Location #0 1

Number of Poles (p) 5
Pole Location #1 -0.92
Pole Location #2 -0.4
Pole Location #3 -0.3
Pole Location #4 -0.1
Pole Location #5 0.4
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Figure 4.65: Plot of s[n], Scenario I

Problem parameters are given in Table 4.15

Table 4.15: Problem Parameters for Scenario I

Parameter Value

pmax 10
SNR 60 dB
p 0.1
MCNum 10000

Results
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The poles of all-pole model signals are estimated from noisy observations of the

signal. The proposed method is used to select the number of poles that should

be used in the model. Figure 4.66 shows the RMS value of Prony error with

changing number of poles. The error decreases monotonically as p increases.

However, Prony approximation error does not decrease monotonically as shown

in Figure 4.67. This is due to the fact that Prony's method is an approximation

to the non-linear LS problem. Its error is di�erent than the actual error de�ned

in (4.22). The proposed method tracks the changes in the Prony error, not

Prony approximation error. Histogram of the selected number of poles by the

proposed method is given in Figure 4.68. The proposed method selects all-pole

models with 4 or 5 poles in most of the experiments. From Figure 4.67, it can

be seen that using all-pole signal with 5 poles is suitable. However, since the

Prony error is almost same for p = 4 and p = 5 the proposed method chooses

both of them. This di�erence is due to the performance of Prony's method not

the proposed method itself. Nevertheless, selecting p = 4 is not the worst choice

according to Figure 4.67.
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Figure 4.66: eprony[n] vs p, Scenario I
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Figure 4.67: εprony vs p, Scenario I
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Figure 4.68: Selection Percentage of p by The Proposed Algorithm, Scenario I

4.4.1.2 Scenario II

Problem De�nition

Parameters of s[n] signal are given in Table 4.16. Notice that this is not an
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all-pole signal, it has 2 zeros in addition to 4 poles. All-pole signal can also

be used to model more general signals in practice like this signal [19]. In this

scenario, s[n] is generated using more general formula given in (4.19) not using

(4.23) which is valid for only all-pole signals. However, during modeling signal

is assumed to be an all-pole signal as given in (4.23) and modeled using this

assumption. Plot of the signal is given in Figure 4.69.

Table 4.16: Signal Parameters for Scenario II

Parameter Value

Length 98
Number of Zeros (q) 2
Zero Location #0 1
Zero Location #1 -0.2
Zero Location #2 0.1

Number of Poles (p) 4
Pole Location #1 -0.8 + 0.1j
Pole Location #2 -0.8 - 0.1j
Pole Location #3 -0.7 + 0.6j
Pole Location #4 -0.7 - 0.6j
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Figure 4.69: Plot of s[n], Scenario II

Problem parameters are given in Table 4.17.
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Table 4.17: Problem Parameters for Scenario II

Parameter Value

pmax 10
SNR 60 dB
p 0.1
MCNum 10000

Results

From Figure (4.72), the proposed method selects the suitable number of poles

at most of time according to Prony error graph shown in Figure 4.70. How-

ever, similar to Scenario I, the Prony approximation error does not follow the

Prony error exactly. This situation is independent from the proposed method

as explained previously.

1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

Prony Error

R
M
S
E

p

Figure 4.70: eprony[n] vs p vs p, Scenario II
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Figure 4.71: εprony[n] vs p vs p, Scenario II
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Figure 4.72: Selection Percentage of p by The Proposed Algorithm, Scenario II

4.4.1.3 Scenario III

Problem De�nition

Parameters of s[n] are given in Table 4.18. Notice that this is same signal

introduced in Scenario I. Therefore, plot of s[n] is not given again.
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Table 4.18: Signal Parameters for Scenario III

Parameter Value

Length 96
Number of Zeros (q) 0
Zero Location #0 1

Number of Poles (p) 5
Pole Location #1 -0.92
Pole Location #2 -0.4
Pole Location #3 -0.3
Pole Location #4 -0.1
Pole Location #5 0.4

Problem parameters are given in Table 4.19. The only di�erence form Scenario

I is value of SNR, which is lower than Scenario I in this case. This scenario is

given to show the e�ect of SNR on the performance.

Table 4.19: Problem Parameters for Scenario III

pmax 10
SNR 20 dB
p 0.1
MCNum 10000

Results

The �rst thing that is di�erent from the previous scenarios is the changes in

both Prony error and Prony approximation error with p. In this case errors do

not change signi�cantly with p as shown in Figures 4.73 and 4.74. Notice the

limits of y-axes. As shown in Figure 4.75, the proposed method generally selects

one pole model. This selection is logical if Figure 4.73 is considered. According

to this �gure, model with order 2 does not provide a �signi�cant� decrease in

RMSE than model with order 1. However, selected number of poles should be

close to 5 in order to estimate the model order accurately. For this SNR value,

the reduction in RSS is dominated by not only signal components but also noise

components. Therefore, it is not possible to estimate the correct model order

using RSS values.
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As an example, one of the observed signals used during the simulation is shown

in (4.75).

1 2 3 4 5 6 7 8 9 10

10
−0.87

10
−0.86

10
−0.85

10
−0.84

Prony Error
R
M
S
E

p

Figure 4.73: eprony[n] vs p, Scenario III
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Figure 4.74: εprony[n] vs p, Scenario III
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Figure 4.75: Selection Percentage of p by The Proposed Algorithm, Scenario III
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Figure 4.76: s[n] and y[n] Realization, Scenario III

4.5 Segmentation of Damped Sinusoidals

As a last example problem, segmentation of the impulse responses of casual

LTI �lters will be considered. Similar to segmentation of multi tone signals,

impulse responses are concatenated over time. Noisy observation is segmented
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into multiple segments such that each contains observation from a single impulse

response. Segmented observations may be modeled later as all-pole signals ex-

plained in the previous example problem. However, this example problem is

about only segmentation of observations. This is also an example problem for

usage of the F-test based proposed method with other algorithms as it will be

explained soon.

s[n] is generated by summing impulse responses of H di�erent casual LTI �lters

as given below

s[n] =


H∑
h=1

sh(n, n1h , n2h ,aph , bqh , ph, qh) 0 ≤ n ≤ N − 1

0 otherwise,

sh(n, n1h , n2h ,aph , bqh , ph, qh) ,

Z
−1{Sh(z)} n1h ≤ n ≤ n2h

0 otherwise,

Sh(z,aph , bqh , ph, qh) =

qh∑
k=0

bq(k, h)z−k

1 +
ph∑
k=1

ap(k, h)z−k
,

aph ,



ap(1, h)

ap(2, h)

ap(3, h)
...

ap(ph, h)


ph×1,

bqh ,



bq(0, h)

bq(1, h)

bq(2, h)

bq(3, h)
...

bq(gh, h)


(qh+1)×1,

Nh , n2h − n1h + 1.

ap(j, i) and bq(j, i) denote jth pole and jth zero of ith response, respectively. To

demonstrate the structure of s[n], an example is shown in Figure 4.77 where
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H = 4. It was mentioned that all-pole modeling can also be used to model

signals with number of zeros greater than one. Therefore, there is no constraint

on number of zeros for any response.
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Figure 4.77: An Example s[n] Signal

Segmentation is based on the di�erence between approximated signal using

Prony's method and the observation signal. Since Prony's method approxi-

mates to the signal as a sum of damped sinusoidals, at starting point of the

next segment the error between the approximation and the observation starts

to increase. Segmentation is done by tracking this error which is not related

with F-test. F-test is used as in the previous model order selection problem for

Prony's method. Once the error reaches to error_threshold, which is di�erent

than threshold used in F-test, new segment starts. Observation in the new seg-

ment is modeled as all-pole signal using Prony's method with the help of the

proposed F-test based number of poles selection approach. The segmentation

algorithm is shown in Figure 4.78.

Blue block shown in Figure 4.78 represents the algorithm previously given in

the number of pole selection problem. It represents the algorithm shown in

Figure 4.64. It can be seen that the segmentation algorithm given for this

problem is quite di�erent than the algorithm given for multi tone signals. In
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Figure 4.78: The Proposed Segmentation Algorithm

multi tone segmentation problem, power of tone does not decrease as search

window moves. However in this case, power of damped sinusoidal decreases if

a search window is used and shifted. Therefore, segmentation algorithm is not

F-test based completely.

The algorithm works as follows: It is assumed that observation starts with a
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noisy impulse response. Ni samples are selected from the beginning of the �rst

segment. Using the proposed algorithm given in the previous problem, selected

samples are modeled as all-pole signal with pole number selected by the proposed

method. Prony approximation error which is de�ned in (4.29) is calculated for

the rest of the observation. A threshold called error_threshold is calculated

for segmentation.

To calculate error_threshold, absolute value of Prony approximation error

is smoothed using a moving average �lter with window length NMA. Then,

error_threshold is set as mean value of the �rst Nmin samples. Minimum length

of each segment is also taken as Nmin. The lowest possible index where the ab-

solute value of Prony approximation error is greater than error_threshold is

found after segment lasts at least Nmin samples. This index is taken as starting

point of the new segment. The �ow is repeated for the new segment and the

segmentation continues until the end of the observation.

error_threshold is calculated as 1

error_threshold =
1

Nmin

Nmin−1∑
k=0

smooth(|eprony[n]|, NMA). (4.32)

The following parameters are used in the algorithm shown in Figure 4.78.

• Ni (Ninitial): Number of samples taken from the beginning of the each new

segment to approximate to the observation using Prony's method.

• Nmin (Nminimum): Minimum length of each segment. If there is a pri-

ori information about minimum separation between two consecutive �lter

responses, it may be used to set this parameter.

• NMA (NMoving Average): Length of the moving window used to smooth out

Prony error as given in (4.32).

• pmax: Limits the maximum number of poles used in Prony's method. One

may want to set an upper limit for p̂ if there is a priori information about
1 smooth() function is used to demonstrate moving average �lter. Indeed, this syntax is used

same as smooth() function of Curve Fitting Toolbox of MATLABR©. For detailed information please

see the MATLABR© R2015a documentation or visit: http://www.mathworks.com/help/curvefit/

smooth.html
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s[n]. It is used in blue box shown in Figure 4.78. It is the same parameter

introduced in the previous problem.

4.5.1 Simulation Results

4.5.1.1 Scenario I

Problem De�nition

In this scenario H is selected as 4. Parameters for each impulse response are

given in Table 4.20.

Table 4.20: Signal Parameters for Scenario I

Parameter s1[n] s2[n] s3[n] s4[n]

Starting Index 0 40 80 120
End Index 39 79 119 179
Length 40 40 40 60

Number of Zeros (q) 0 0 0 0
Zero Location #0 1 1 1 1

Number of Poles (p) 1 1 1 1
Pole Location #1 -0.6 -0.7 -0.8 -0.9

Problem parameters are given in Table 4.23.

Table 4.21: Problem Parameters for Scenario I

Parameter Value

pmax 10
SNR 60 dB
pfd 0.1
Ni 10
NMA 20
Nmin 30

Results

Indices of ideal segment borders should be 40, 80, 120. The proposed method

estimates these values as: 39, 179, 119. It �nds the segment borders almost
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exactly. The segment borders are shown in Figure 4.79.
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Figure 4.79: s[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario I

4.5.1.2 Scenario II

Problem De�nition

In this scenario H is selected as 4. Parameters for each impulse response are

given in Table 4.22.
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Table 4.22: Signal Parameters for Scenario II

Parameter s1[n] s2[n] s3[n] s4[n]

Starting Index 0 75 172 269
End Index 74 171 268 367
Length 75 97 97 99

Number of Zeros (q) 0 0 0 2
Zero Location #0 1 1 1 1
Zero Location #1 - - - -0.9 + 0.7j
Zero Location #2 - - - -0.9 - 0.7j

Number of Poles (p) 6 4 5 2
Pole Location #1 -0.2 + 0.5j -0.2 + 0.1j -0.92 -0.9 + 0.01j
Pole Location #2 -0.2 - 0.5j -0.2 - 0.1j -0.4 -0.9 - 0.01j
Pole Location #3 0.1 -0.7 - 0.6j -0.3 -
Pole Location #4 -0.1 -0.7 + 0.6j -0.1 -
Pole Location #5 -0.6 + 0.7j - -0.4 -
Pole Location #6 -0.6 - 0.7j - - -

Problem parameters are given in Table 4.23.

Table 4.23: Problem Parameters for Scenario II

Parameter Value

pmax 10
SNR 60 dB
pfd 0.1
Ni 10
NMA 20
Nmin 50

Results

Indices of ideal segment borders should be 75, 172, 269. The proposed method

estimates these values as: 74, 171, 271. It �nds the segment borders with

relatively small errors. The segment borders are shown in Figure 4.80.
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Figure 4.80: s[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario II

4.5.1.3 Scenario III

Problem De�nition

As a last example, a real world data is taken from p. 133 of [19]. Raw data can be

found in the CD included in [19] with the name FSSP3exer5_2.mat. This data

is taken from output of an accelerometer of a faulty bearing machine. Since

data is not synthetically generated, it is not possible to give a mathematical

representation. Instead, a plot is given in Figure 4.81.

Problem parameters are given in Table 4.24.

Table 4.24: Problem Parameters for Scenario III

Parameter Value

pmax 10
SNR ?
pfd 0.4
Ni 10
NMA 20
Nmin 100
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Figure 4.81: Plot of y[n]

Although expression and characteristics of noise aren't known, proposed method

is applied anyway.

Results

Since the mathematical expression of the actual signal is unknown, results can

be only seen visually in Figure 4.82. Except few false decisions, segments seem

to be at correct positions.
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Figure 4.82: y[n] and Borders of Dynamic Segments Selected by The Proposed
Algorithm, Scenario III
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CHAPTER 5

CONCLUSIONS

In this thesis, di�erent F-test based methods are proposed for model order se-

lection related problems. F-test is studied in the statistical literature whereas

it is not equally used in the signal processing area. The fundamentals of F-test

are adapted to signal processing problems in this work.

Initially, the necessary background information is given. After giving necessary

information, the proposed methods are supported by example problems. In each

problem, the proposed algorithms are shown using �ow charts and supported by

simulations. The e�ects of SNR and F-test parameters as pfd on the performance

are studied in some simulations.

In general, F-test based methods looks suitable for some signal processing prob-

lems, provided that the signal can be indeed modeled as an element of a linear

space.

One of the main advantages of F-test is that it does not require noise variance

information. On the other hand, SNR should be relatively high to estimate the

model orders accurately.

The F-test based approaches also look suitable for embedded and real time ap-

plications. The most expensive operation is the calculation of A+ matrix which

involves a matrix inversion operation. Apart form this calculation, application

of F-test is quite easy to implement.
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Future Work

Although the e�ects of pfd and SNR are shown in some simulations, their e�ects

aren't analyzed in detail. It is shown and explained that both of them a�ect

the performance of the suggested methods directly. For a given problem, an

optimum selection of pfd parameter may be analyzed. Also the SNR threshold

beyond which F-test works well can be studied.
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APPENDIX A

CRAMÉR�RAO LOWER BOUND FOR

ZERO-CROSSING POINT ESTIMATION

Consider the signal given as

x[n] = a(n− n0) = an+ b, n = −N − 1

2
, . . . ,−1.5,−0.5, 0.5, 1.5, . . . ,

N − 1

2
.

(A.1)

n0 is the zero-crossing point of x[n]. a and b, in other words n0, are unknown

parameters of the signal. Similar to example problem about zero-crossing point

estimation problem, it is assumed that n0 can take any real value between −0.5

and 0.5. At this section, CRLB will be derived for n̂0.

This problem is similar to CRLB calculation for vector parameter case [18].

N is an integer. x[n] is observed under AWGN (w[n]) as

y[n] = x[n] + w[n] = An+B + ω[n].

This can be written as

yN×1 = AN×2p2×1 +wN×1,

in vector notation where

p =

p1

p2

 =

a
b

 ,
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A =



−N−1
2

1
...

...

−0.5 1

0.5 1
...

...
N−1

2
1


.

Fisher information matrix (I(p)) can be written as

I(p) =


−E

[
∂2 ln p(y;p)

∂a2

]
−E

[
∂2 ln p(y;p)

∂a∂b

]

−E
[
∂2 ln p(y;p)

∂b∂a

]
−E

[
∂2 ln p(y;p)

∂b2

]
 .

The likelihood function is given as

p(y;p) =
1

(2πσ2)
N
2

exp

− 1

2σ2

N−1
2∑

n=−N−1
2

(y[n]− an− b)2


and

∂ ln p(y;p)

∂a
=

1

σ2

N−1
2∑

n=−N−1
2

(y[n]− an− b)n,

∂2 ln p(y;p)

∂a2
=− 1

σ2

N−1
2∑

n=−N−1
2

n2, (A.2)

∂ ln p(y;p)

∂b
=

1

σ2

N−1
2∑

n=−N−1
2

(y[n]− an− b),

∂2 ln p(y;p)

∂b2
=− N

σ2
,

∂2 ln p(y;p)

∂a∂b
=− 1

σ2

N−1
2∑

n=−N−1
2

n = 0,

∂2 ln p(y;p)

∂b∂a
=− 1

σ2

N−1
2∑

n=−N−1
2

n = 0.
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Consider summation term given (A.2) as follows;

N−1
2∑

n=−N−1
2

n2 =2

N−1
2∑

n= 1
2

n2

=2

N
2
−1∑

k=0

(
k +

1

2

)2

, k = n− 1

2

=2

N
2∑
l=1

(
l − 1

2

)2

, l = 1 + k

=
1

2

N
2∑
l=1

(2l − 1)2 , l = 1 + k

=
1

2

M∑
l=1

(2l − 1)2 , M =
N

2

=2
M∑
l=1

l2 − 2
M∑
l=1

l +
M

2

=
M(M + 1)(2M + 1)

3
−M(M + 1) +

M

2

=
M

6

[
4M2 − 1

]
=
N(N2 − 1)

12

and then
∂2 ln p(y;p)

∂a2
=

1

σ2

N(N2 − 1)

12

can be written.

Now the Fisher information matrix can be written as

I(p) =
1

σ2


N(N2 − 1)

12
0

0 N

 .

Finally using (A.1), the followings can be written,

g(p) , n0 = − b
a

= −p2

p1

,

∂g(p)

∂p
=

[
∂g(p)

∂p1

∂g(p)

∂p2

]
=

[
b

a2
−1

a

]
,
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∂g(p)

∂p
I−1(p)

∂g(p)T

∂p
=

σ2

Na2

(
1 +

12n2
0

N2 − 1

)
,

var{n̂0} ≥
σ2

Na2

(
1 +

12n2
0

N2 − 1

)
.
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